Nonequilibrium transitions in thermotropic phases of eicosenoic acid methyl esters

  • S. P. Chang
  • J. A. Rothfus


Methyl esters ofcis-5-eicosenoic (5-EAME) andcis-11-eicosenoic (11-EAME) acids from the seed oil ofLimnanthes alba (Meadowfoam) exhibit a degree of thermotropic polymorphism unobserved with shorter and longer chainlength monoenic methyl esters. 5-EAME freezes at 264 K and melts at 266 K if cooled no lower than 215 K. 11-EAME freezes at 239 K and melts at 255 K if cooled at no lower than 240 K. Solids cooled to lower temperatures undergo phase transformation to highermelting polymorphs (274 K, 5-EAME; 262 K, 11-EAME), and samples often exhibit double melting endotherms. Quantities of each high-melting phase vary with time at temperatures below characteristic initiation temperatures. Highly temperature-sensitive phase conversions suggest low temperature nucleation, followed by crystal growth and conversion, as reheating allows molecular motion. Once formed, both high-melting phases melt with essentially the same melting entropy. Thermodynamic and kinetic analyses imply that differences exhibited by the isomeric esters derive from aliphatic configuration distal to the double bond.

Key Words

Differential scanning calorimetry fatty ester polymorphism Limnanthes Meadowfoam 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Turner, W.R., Normal Alkanes,Ind. Eng. Chem. Prod. Res. Dev. 10:238–260 (1971).CrossRefGoogle Scholar
  2. 2.
    Hagemann, J.W., and J.A. Rothfus, Polymorphism and Transformation Energetics of Saturated Monoacid Triglycerides from Differential Scanning Calorimetry and Theoretical Modeling,J. Am. Oil Chem. Soc. 60:1123–1131 (1983).Google Scholar
  3. 3.
    Gibon, V., F. Durant, and C. Deroanne, Polymorphism and Intersolubility of Some Palmitic, Stearic and Oleic Triglycerides: PPP, PSP and POP, —Ibid. 63:1047–1055 (1986).CrossRefGoogle Scholar
  4. 4.
    Sato, K., T. Arishima, Z.H. Wang, K. Ojima, N. Sagi, and H. Mori, Polymorphism of POP and SOS. I. Occurrence and Polymorphic Transformation, —Ibid. 66:664–674 (1989).Google Scholar
  5. 5.
    Kellens, M., W. Meeussen, C. Riekel, and H. Reynaers, Time Resolved X-Ray Diffraction Studies of the Polymorphic Behavior of Tripalmitin Using Synchrotron Radiation,Chem. Phys. Lipids 52:79–98 (1990).CrossRefGoogle Scholar
  6. 6.
    Cebula, D.J., D.J. McClements, J.W. Povey, and P.R. Smith, Neutron Diffraction Studies of Liquid and Crystalline Trilaurin,J. Am. Oil Chem. Soc., 69:130–136 (1992).CrossRefGoogle Scholar
  7. 7.
    Timmins, P.A., B. Poliks, and L. Banaszak, The Location of Bound Lipid in the Lipovitellin Complex,Science 257:652–655 (1992).CrossRefGoogle Scholar
  8. 8.
    Phillips, B.E., C.R. Smith, Jr., and W.E. Tallent, Glycerides of Limnathes douglasii Seed Oil,Lipids 6:93–99 (1971).CrossRefGoogle Scholar
  9. 9.
    Hagemann, J.W., W.H. Tallent, J.A. Barve, I.A. Ismail, and F.D. Gunstone, Polymorphism in Single-Acid Triglycerides of Positional and Geometric Isomers of Octadecenoic Acid,J. Am. Oil Chem. Soc. 52:204–207 (1975).Google Scholar
  10. 10.
    Mandelkern, L.,Crystallization of Polymers, McGraw-Hill, New York, 1964, p. 241–265.Google Scholar
  11. 11.
    Hernqvist, L., and K. Larsson, On the Crystal Structure of the β′-Form of Triglycerides and Structural Changes at the Phase Transitions LIQ. →α→β′≽β,Fette Seifen Anstrichm. 84:349–354 (1982).CrossRefGoogle Scholar
  12. 12.
    Ubellohde, A.R.,The Molten State of Matter, Wiley, New York, (1978).Google Scholar
  13. 13.
    O'Reilly, J.M., and M. Goldstein (eds.),Structure and Mobility in Molecular and Atomic Glasses, Vol. 371, New York, 1981.Google Scholar
  14. 14.
    Angell, C.A. and M. Goldstein (eds.),Dynamic Aspects of Structural Change in Liquids and Glasses, Vol. 484, New York, 1986.Google Scholar
  15. 15.
    Hagemann, J.W., and J. A. Rothfus, Computer Modeling of Packing Arrangements and Transitions in Saturated-cis-Unsaturated Mixed Triglycerides.J. Am. Oil Chem. Soc. 69:429–437 (1992).CrossRefGoogle Scholar
  16. 16.
    Daniels, F., and R.A. Alberty,Physical Chemistry, 2nd edn., Wiley, New York, 1963, pp. 649–652.Google Scholar
  17. 17.
    Suzuki, M., T. Ogaki, and K. Sato, Crystallization and Transformation Mechanisms of a, β- and γ-Polymorphs of Ultra-Pure Oleic Acid,J. Am. Oil Chem. Soc. 62:1600 (1985).Google Scholar
  18. 18.
    Suzuki, M., K. Sato, N. Yoshimoto, S. Tanaka, and M. Kobayashi, Polymorphic Behavior of Erucic Acid, —Ibid. 65:1942–1947 (1988).CrossRefGoogle Scholar
  19. 19.
    Hiramatsu, N., T. Inoue, T. Sato, M. Suzuki, and K. Sato, Pressure Effect on Transformation ofcis-Unsaturated Fatty Acid Polymorphs. 3. Erucic Acidcis-ω9-Docosenoic Acid) and Asclepic Acid (cis-ω7-Octadecenoic Acid)Chem. Phys. Lipids 61:283–291 (1992).CrossRefGoogle Scholar
  20. 20.
    Hagemann, J.W., and J.A. Rothfus, Computer Modeling for Stabilities and Structural Relationships of n-Hydrocarbons,J. Am. Oil Chem. Soc. 56:1008–1013 (1979).Google Scholar
  21. 21.
    Cevc, G., How Membrane Chain-Melting Phase-Transition Temperature Is Affected by the Lipid Chain Asymmetry and Degree of Unsaturation: An Effective Chain-Length Model,Biochemistry 30:7186–7193 (1991)CrossRefGoogle Scholar

Copyright information

© AOCS Press 1996

Authors and Affiliations

  • S. P. Chang
    • 1
  • J. A. Rothfus
    • 1
  1. 1.Biopolymer ResearchNCAUR, USDA, ARSPeoria

Personalised recommendations