Journal of the American Oil Chemists’ Society

, Volume 73, Issue 11, pp 1459–1464 | Cite as

Biocatalytical synthesis and monolayer studies of multiple hydroxylated wax esters

  • Wolfram Lokotsch
  • Siegmund Lang
  • Dietmar Möbius
  • Fritz Wagner
Biocatalysis Articles


The continuous production of aleuritic acid decyl ester has been investigated with LipozymeTM as biocatalyst in a fixed-bed reactor. To avoid the limiting effects of mean substrate solubility, the direct synthesis without organic solvents was chosen, whereby a yield of 90% was obtained depending on the residence time. A comparison of different reaction paths to synthesize a centrally dihydroxylated decyl ester indicated a preference for transesterification of the methyl ester. Under external compression, the interfacial behavior of several enzymatically produced hydroxy wax esters was determined with a Langmuir film balance to find a structure/efficiency relationship. Brewster-angle microscopy allowed direct visualization of a wax ester monolayer at the air/water interface.

Key Words

π A-isotherms aleuritic acid biocatalysis Brewster-angle microscopy enzyme fixed-bed reactor esterification hydroxy was esters Langmuir film balance lipase transesterification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lokotsch, W., Biocatalytical Synthesis and Physicochemical Characterization of Uncommon Wax Esters, Ph.D. Thesis, Technical University of Braunschweig, Germany, 1994.Google Scholar
  2. 2.
    Lang, S., A. Ziemann-Nöthe, B. Steffen, W. Lokotsch, R. Multzsch, and F. Wagner, Uncommon Wax Esters-Enzymatic Syntheses and Properties,Fat Sci. Technol. 97:105–112 (1995).Google Scholar
  3. 3.
    Knox, T., and K.R. Cliffe, Synthesis of Long-Chain Esters in a Loop Reactor System Using a Fungal Cell Bound Enzyme,Bioproc. Biochem. 10:188–192 (1984).Google Scholar
  4. 4.
    Khaled, N., D. Montet, M. Pina, and J. Graille, Fructose Oleate Synthesis in a Fixed Catalyst Bed Reactor,Biotechnol. Lett. 13:167–172 (1991).CrossRefGoogle Scholar
  5. 5.
    Steffen, B., Production of Uncommon Fatty Acids and Studies on Their Enzyme-Catalyzed Esterification, Diploma Thesis, Technical University of Braunschweig, Germany, 1989.Google Scholar
  6. 6.
    Warwel, S., W. Pompetzki, and E.A. Deckwirth, Transition-Metal Catalyzed Oxidation of Unsaturated Fatty Acids: Synthesis of Oxo- and Dicarboxylic Acids,Fat Sci. Technol. 93:210–215 (1991).Google Scholar
  7. 7.
    Lucas, T., Contributions for the Refinement of Renewable Resources by Addition-Reactions on Unsaturated Fats, Ph.D. Thesis, University of Münster, Germany, 1991.Google Scholar
  8. 8.
    Schäfer, H.-J., T. Lucas, R. Quermann, A. Weiper, and M. aus dem Kahmen, Additions to Unsaturated Fatty Acids, C-C-Connection at the Alkyl Chain of Fatty Acids and Kolbe-Dimerization, inNew Possible Applications of Native Oils and Fats as Chemical Raw Materials, edited by S. Warwel and B. Neuß, Weka-Druck, Linnich, 1992, pp. 200–224.Google Scholar
  9. 9.
    Lokotsch, W., R. Multzsch, B. Steffen, S. Lang, and F. Wagner, Enzymatic Formation and Interfacial Active Properties of Uncommon Hydroxy Wax Esters, inDECHEMA Biotechnology Conferences, Vol. 5, edited by G. Kreysa and A.J. Driesel, VCH Verlagsgesellschaft, Weinheim, 1992, pp. 37–40.Google Scholar
  10. 10.
    Lang, S., R. Multzsch, A. Passeri, A. Schmeichel, B. Steffen, F. Wagner, D. Hamann, and H.K. Cammenga, Unusual Wax Esters and Glycolipids: Biocatalytical Formation and Physico-Chemical Characterization,Acta Biotechnologica 11:379–386 (1991).CrossRefGoogle Scholar
  11. 11.
    Multzsch, R., W. Lokotsch, B. Steffen, S. Lang, J.O. Metzger, H.J. Schäfer, S. Warwel, and F. Wagner, Enzymatic Production and Physicochemical Characterization of Uncommon Wax Esters and Monoglycerides,J. Am. Oil Chem. Soc. 71:721–725 (1994).Google Scholar
  12. 12.
    Hönig, D., and D. Möbius, Direct Visualization of Monolayers at the Air-Water Interphase by Brewster Angle Microscopy,J. Phys. Chem. 95:4590–4592 (1991).CrossRefGoogle Scholar
  13. 13.
    Henon, S., and J. Meunier, Microscope at the Brewster Angle: Direct Observation of First-Order Phase Transitions in Monolayers,Rev. Sci. Instrum. 62:936–939 (1991).CrossRefGoogle Scholar
  14. 14.
    Kellner, B.M.J., and D.A. Cadenhead, Monolayer Studies of Hydroxyhexadecanoic Acids,J. Colloid Interface Sci. 63:452–460 (1977).CrossRefGoogle Scholar
  15. 15.
    Vogel, V., and D. Möbius, Reorganization of Bipolar Lipid Molecules in Monolayers at the Air/Water Interface,Thin Solid Films 132:205–219 (1985).CrossRefGoogle Scholar
  16. 16.
    Wagner, F., F. Kleppe, W. Lokotsch, A. Ziemann, and S. Lang, Synthesis of Uncommon Wax Esters with Immobilized Lipases, inEnzyme Engineering XI, Vol. 672 of theAnnals of the New York Academy of Sciences, 1992, pp. 484–491.Google Scholar
  17. 17.
    Sackmann, H., and H.D. Dörfler, Comparative Studies of Film Pressure Behaviour of Fatty Acidn-Alkylesters on an Aqueous Subphase,Z. Phys. Chem. 251:303–313 (1972).Google Scholar

Copyright information

© AOCS Press 1996

Authors and Affiliations

  • Wolfram Lokotsch
    • 2
  • Siegmund Lang
    • 2
  • Dietmar Möbius
    • 1
  • Fritz Wagner
    • 2
  1. 1.Max-Planck-Institut für Biophysikalische ChemieGöttingenGermany
  2. 2.Institut für Biochemie und BiotechnologieTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations