Skip to main content
Log in

Electrocardiographic inverse solution for ectopic origin of excitation in two-dimensional propagation model

  • Electrocardiographic Modelling
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Inverse calculations were examined that sought the origin of a cardiac ectopic excitation sequence. Cardiac anatomy and its geometric relationships to sites on the body surface were adapted from human cross-sectional images to form a two-dimensional model, which included ventricular muscle and a primitive conduction system. The surrounding volume conductor was modelled in a simplified way as unbounded, homogeneous and isotropic. In a series of tests, one ectopic origin was designated the ‘true’ origin. The ECG for this true origin was compared to ECGs for 197 ectopic ‘trial’ origins, and differences between the wave forms for true versus trial origins were determined. Core issues were the magnitudes of changes in ECG wave forms as a function of the site of origin, whether these changes were sufficient to imply uniqueness, and what spatial resolution might be expected, in the presence of realistic noise levels. For a noise level of 10 μV RMS, the origin of excitation was localised to a single region of the muscle using one wave form from the body surface, with a resolution of 10 mm. The resolution was not improved significantly with a second electrode on the body surface, but was substantially improved with an endocardial electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barber, M. R., andFischmann, E. J. (1961): ‘Heart dipole regions and the measurement of dipole moment,’Nature,192, pp. 141–142

    Article  Google Scholar 

  • Barta, E., Adam, D., Salant, E., andSideman, S. (1987): ‘3-D ventricular myocardial electrical excitation: a minimal orthogonal pathways model,’Ann. Biomed. Eng.,15, pp. 443–456

    Article  Google Scholar 

  • Barr, R. C. (1984): ‘Finding the site of origin and velocity of propagation in a short one-dimensional strand from two extracellular waveforms,’IEEE Trans.,BME-31, pp. 546–550

    Google Scholar 

  • Barr, R. C., andSpach, M. S. (1978): ‘Inverse calculation of QRS-T epicardial potentials from body surface potential distributions for normal and ectopic beats in the intact dog,’Circ. Res.,42, pp. 661–675

    Google Scholar 

  • Barr, R. C., Pilkington, T. C., Boineau, J. P., andSpach, M. S. (1966): ‘Determining surface potentials from current dipoles, with application to electrocardiography,’IEEE Trans.,BME-13, pp. 88–92

    Google Scholar 

  • Carter, B. L., Morehead, J., Wolpert, S. M., Hammershlag, S. B., Griffiths, H. J., andKahn, P. C. (1977): ‘Cross-sectional anatomy: computed tomography and ulrasound correlation’ (Appleton-Century-Crofts, New York)

    Google Scholar 

  • Cuppen, J. J. M., andVan Oosterom, A. (1984): ‘Model studies with the inversely calculated isochrones of ventricular depolarization,’IEEE Trans.,BME-31, pp. 652–659

    Google Scholar 

  • De Guise, J., Gulrajani, R. M., Savard, P., Guardo, R., andRoberge, F. A. (1985): ‘Inverse recovery of two moving dipoles from simulated surface potential distributions on a realistic human torso model,’-ibid.,,BME-32, pp. 126–135

    Google Scholar 

  • Dipersio, D. A., andBarr, R. C. (1987): ‘A prototype inverse solution in one-dimension to find the origin of excitation, strand radius, intracellular resistivity, or distance from the surface’,-ibid.,,BME-34, pp. 681–691

    Google Scholar 

  • Eycleshymer, A. L., andSchoemaker, D. M. (1911): ‘A cross-section anatomy’ (D. Appleton & Co., New York)

    Google Scholar 

  • Frank, E. (1956): ‘An accurate, clinically practical system for spatial vectorcardiography,’Circ.,13, pp. 737–49

    Google Scholar 

  • Gabor, D., andNelson, C. V. (1954): ‘Determination of the resultant dipole of the heart from measurements on the body surface,’J. Appl. Phys.,25, pp. 413–416

    Article  Google Scholar 

  • Geselowitz, D. B. (1960): ‘Multipole representation for an equivalent cardiac generator,’Proc. IRE,48, pp. 75–79

    Google Scholar 

  • Giorgi, C., Nadeau, R., Savard, P., Shenasa, M., Page, P. L., andCardinal, R. (1991): ‘Body surface isopotential mapping of the entire QRST complex in the Wolff-Parkinson-White syndrome: correlation with the location of the accessory pathway,’Amer. Heart J.,121, pp. 1445–1453

    Article  Google Scholar 

  • Gulrajani, R. M., Roberge, F. A., andSavard, P. (1989): ‘The inverse problem of electrocardiography’in:Macfarlane, P. W., andLawrie, T. D. V. (Eds) ‘Comprehensive electrocardiology’ (Pergamon Press, New York)

    Google Scholar 

  • Holt, J. H., Barnard, A. C. L. andLynn, M. S. (1969): A study of the human heart as a multiple dipole electrical source.Circ.,40, 687–718

    Google Scholar 

  • Huiskamp, G., andVan Oosterom, A. (1989): ‘Tailored versus realistic geometry in the inverse problem of electrocardiography’,IEEE Trans.,BME-36, pp. 827–835

    Google Scholar 

  • Huygens, C. (1952): ‘Treatise on light’in ‘Great books of the western world’, (Encyclopædia Britannica, London) Vol. 34

    Google Scholar 

  • Ihara, T., andBarr, R. C. (1988): ‘Inverse solutions in 2D using propagation models,’Phys. Med. Biol., Suppl. I,33, p. 169.

    Google Scholar 

  • Johnson, C. R., andPollard, A. E. (1990): ‘Electrical activation of the heart: computational studies of the forward and inverse problems in electrocardiography’,in Pilkington, T. C. (Ed.): ‘Large scale analysis and modeling: the IBM 1990 Supercomputing Competition’, (MIT Press) pp. 178–213

  • Leon, L. J., andHoracek, B. M. (1991): ‘Computer model of excitation and recovery in the anisotropic myocardium I., II., III,’J. Electrocardiol. 24, pp. 1–41

    Article  Google Scholar 

  • Liebman, L., Zeno, J. A., Olshansky, B., Geha, A. S., Thomas, C. W., Rudy, Y., Henthorn, R. W., Cohen, M., andWaldo, A. L. (1991): ‘Electrocardiographic body surface potential mapping in the Wolff-Parkinson-White syndrome: noninvasive determination of the ventricular insertion sites of accessory atrioventricular connections,’Circ.,83, pp. 886–901

    Google Scholar 

  • Lorange, M., andGulrajani, R. M. (1986): ‘Computer simulation of the Wolff-Parkinson-White preexcitation syndrome with a modified Miller-Geselowitz heart model,’IEEE Trans.,BME-33, pp. 862–873

    Google Scholar 

  • Lorange, M. (1991): ‘Simulation des blocs de conduction a l’aide d’un modele de coeur humain incorporant la propagation anisotropique’. PhD Dissertation, University of Montreal, Canada

    Google Scholar 

  • Macchi, E., Bonatti, V., Botti, G., Di Cola, G., Marmiroli, D., Musso, E., Nicoli, F., Stilli, D., andTaccardi, B. (1982): ‘A solution of the inverse problem in terms of single or multiple dipoles in a non-homogeneous torso model’in Yamada, K., Harumi, K., andMusha, T. (Eds.): ‘Advances in body surface potential mapping’ (The University of Nagoya Press, 1983) pp. 11–19

  • Martin, R. O., Pilkington, T. C., andMorrow, M. N. (1975): ‘Statistically constrained inverse electrocardiography’,IEEE Trans.,BME-22, pp. 487–492

    Google Scholar 

  • Miller III, W. T., andGeselowitz, D. B. (1978): ‘Simulation studies of the electrocardiogram. I. The normal heart,’Circ. Res.,43, pp. 301–315

    Google Scholar 

  • Okajima, M., Fujino, T., Kobayashi, T., andYamada, K. (1968): ‘Computer simulation of the propagation process in excitation of the ventricles,’Circ. Res.,23, pp. 203–211

    Google Scholar 

  • Pollard, A. E., andBarr, R. C. (1991): ‘Computer simulations of activation in an anatomically based model of the human ventricular conduction system,’IEEE Trans.,BME-38, pp. 982–996

    Google Scholar 

  • Rogers, C. L., andPilkington, T. C. (1968): ‘Free-moment current dipoles in inverse electrocardiography’,-ibid.,,BME-15, pp. 312–323

    Google Scholar 

  • Roozen, H., andVan Oosterom, A. (1987): ‘Computing the activation sequence at the ventricular heart surface from body surface potentials,’Med. Biol. Eng. Comput.,25, pp. 250–260

    Article  Google Scholar 

  • Rudy, Y., andMessinger-Rapport, B. J. (1988): ‘The inverse problem in electrocardiography: solutions in terms of epicardial potentials,’CRC Crit. Rev. Biomed. Eng.,16, pp. 215–265

    Google Scholar 

  • Savard, P., Ackaoui, A., Gulrajani, R. M., Nadeau, R. A., Roberge, F. A., Guardo, R., andDube, B. (1985): ‘Localization of cardiac ectopic activity in man by a single moving dipole: comparison of different computation techniques’,J. Electrocardiol.,18, pp. 211–222

    Google Scholar 

  • SippensGroenwegen, A., Spekhorst, H., Van Hemel, N. M., Kingma, J. H., Haver, R. N. W., Janse, M. J., andDunning, A. J. (1990): ‘Body surface mapping of ectopic left and right ventricular activation: QRS spectrum in patients without structural heart disease,’Circ.,82, pp. 879–896

    Google Scholar 

  • SippensGroenwegen, A., Spekhorst, H., Van Hemel, N. M., Kingma, J. H., Haver, R. N. W., Janse, M. J. andDunning, A. J. (1992): ‘Body surface mapping of ectopic left ventricular activation,’Circ. Res.,71, pp. 1361–1378

    Google Scholar 

  • Solomon, J. C., andSelvester, R. H. (1973): ‘Simulation of measured activation sequence in the human heart,’Amer. Heart J.,85, pp. 518–523

    Article  Google Scholar 

  • Soucy, B., Gulrajani, R. M., andCardinal, R. (1989): ‘Inverse epicardial potential solutions with an isolated heart preparation’. Proc. IEEE-EMBS 11th Annual Conf., pp. 193–194

  • Waxman, H. L., andJospehson, M. E. (1982): ‘Ventricular activation during ventricular endocardial pacing: I. electrocardiographic patterns related to the site of pacing,’Amer. J. Cardiol. 50, pp. 1–10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ihara, T., Barr, R.C. Electrocardiographic inverse solution for ectopic origin of excitation in two-dimensional propagation model. Med. Biol. Eng. Comput. 32 (Suppl 1), S41–S50 (1994). https://doi.org/10.1007/BF02523326

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02523326

Keywords

Navigation