Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

“The big sweep”: On the power of the wavefront approach to Voronoi diagrams


We show that the wavefront approach to Voronoi diagrams (a deterministic line-sweep algorithm that does not use geometric transform) can be generalized to distance measures more general than the Euclidean metric. In fact, we provide the first worst-case optimal (O (n logn) time,O(n) space) algorithm that is valid for the full class of what has been callednice metrics in the plane. This also solves the previously open problem of providing anO (nlogn)-time plane-sweep algorithm for arbitraryL k -metrics. Nice metrics include all convex distance functions but also distance measures like the Moscow metric, and composed metrics. The algorithm is conceptually simple, but it copes with all possible deformations of the diagram.

This is a preview of subscription content, log in to check access.


  1. [1]

    M. Atallah. Dynamic computational geometry.Comput. Math. Appl. 11, 1171–1181, 1985.

  2. [2]

    F. Aurenhammer. Voronoi diagrams—a survey of a fundamental data structure.ACM Comput. Surveys 23 (3), 345–405, 1991.

  3. [3]

    K. Q. Brown. Voronoi diagrams from convex hulls.Inform. Process. Lett. 9 (5), 223–228, 1979.

  4. [4]

    K. L. Clarkson and P. W. Shor, Applications of random sampling in computational geometry, II.Discrete. Comput. Geom. 4, 387–421, 1989.

  5. [5]

    L. P. Chew and R. L. Drysdale III. Voronoi diagrams based on convex distance functions.Proceedings of the 1st ACM Symposium on Computational Geometry, 1985, 235–244.

  6. [6]

    R. Cole. Reported by C. Ó'Dúnlaing, 1989.

  7. [7]

    F. Dehne and R. Klein. A sweepcircle algorithm for Voronoi diagrams. In H. Göttler and H. J. Schneider, editors,Graphtheoretic Concepts in Computer Science (WG '87), pp. 59–70, Staffelstein. LNCS 314, Springer-Verlag, Berlin, 1988.

  8. [8]

    H. Edelsbrunner and R. Seidel. Voronoi diagrams and arrangements.Discrete Comput. Geom. 1, 25–44, 1986.

  9. [9]

    S. Fortune. A sweepline algorithm for Voronoi diagrams.Algorithmica 2 (2), 153–174, 1987.

  10. [10]

    Ch. Icking, R. Klein, N.-M. Le, and L. Ma. Convex distance functions in 3D are different,Proceedings of the 9th ACM Symposium on Computational Geometry, 1993, pp. 116–123.

  11. [11]

    R. Klein. Abstract Voronoi diagrams and their applications. In H. Noltemeier, editor,Computational Geometry and Its Applications (CG '88), pp. 148–157, Würzburg. LNCS 333, Springer-Verlag, Berlin, 1988.

  12. [12]

    R. Klein.Concrete and Abstract Voronoi diagrams. LNCS 400, Springer-Verlag, Berlin, 1989.

  13. [13]

    R. Klein, K. Mehlhorn, and St. Meiser On the construction of abstract Voronoi diagrams, II. In T. Asano, T. Ibaraki, H. Imai, and T. Nishizeki, editors,Algorithms (SIGAL '90), pp. 138–154, Tokyo. LNCS 450, Springer-Verlag, Berlin, 1990.

  14. [14]

    R. Klein and D. Wood. Voronoi diagrams based on general metrics in the plane.Proceedings of the 5th Annual Symposium on Theoretical Aspects of Computer Science (STACS '88), pp. 281–291, Bordeaux. LNCS 294, Springer-Verlag, Berlin, 1988.

  15. [15]

    M. L. Mazón and T. Recio. Voronoi diagrams based on strictly convex distances on the plane. Manuscript, Departamento De Matemáticas, Universidad de Cantabria, Santander, 1991.

  16. [16]

    K. Mehlhorn, St. Meiser, and C. O'Dúnlaing. On the construction of abstract Voronoi diagrams.Discrete Comput. Geom. 6, 211–224, 1991.

  17. [17]

    R. Seidel. Constrained Delaunay Triangulations and Voronoi Diagrams with Obstacles. Technical Report 260, IIG-TU Graz, pages 178–191, 1988.

  18. [18]

    M. I. Shamos and D. Hoey. Closest-point problems.Proceedings of the 16th IEEE Symposium on Foundations of Computer Science, 1975, pp. 151–162.

  19. [19]

    G. M. Shute, L. L. Deneen, and C. D. Thomborson. AnO(n logn) plane-sweep algorithm forL 1 andL Delaunay triangulations,Algorithmica 6, 207–221, 1991.

Download references

Author information

Additional information

Research partially supported by the Natural Sciences and Engineering Research Council of Canada.

Research partially supported by the Deutsche Forschungsgemeinschaft, Grant No. Kl 655/2-1.

Communicated by L. J. Guibas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dehne, F., Klein, R. “The big sweep”: On the power of the wavefront approach to Voronoi diagrams. Algorithmica 17, 19–32 (1997). https://doi.org/10.1007/BF02523236

Download citation

Key Words

  • Computational geometry
  • Delaunay triangulation
  • Voronoi diagram
  • Sweepline