Regurgitant heart valve flow from 2-D proximal velocity field: continued search for the ideal method

  • L. Eidenvall
  • S. Barclay
  • D. Loyd
  • B. Wrannel
  • P. Ask
Physiological Measurement

Abstract

It has been suggested that flow through a leaking heart valve can be determined by studying the proximal velocity field. Normally, only the centre-line velocity is studied as a potential method. The aim of the study is to improve this method by using information from the entire reconstructed proximal velocity field. Four methods are compared: use of the centre-line velocity; use of velocities at three different angles; integration of velocities over a hemisphere; and integration of velocities over an estimated hemi-elliptical isovelocity line. Measurements are performed in a hydraulic model with 4, 6 and 8 mm circular orifices, and these are compared with those from computer simulation. From the results presented in the study, it is suggested that the velocities should be integrated over a hemisphere within a best zone. This zone is dependent on the instrument settings, but in this case it is positioned 1·2–1·4 orifice diameters from the orifice inlet, with an angle of up to ±45° from the centre axis, and contains velocities in the range 0·15–0·45 ms−1.

Keywords

Flow mapping Mitral regurgitation Proximal velocity field Two-dimensional colour Doppler 

List of symbols

A

area of a hemispherical or hemi-elliptical surface segment

a

distance between teh centre of the orifice inlet and the point of measurement

b

distance between the transducer and the point of measurement

c

distance between the centre of the orifice inlet and the transducer

δ

angle between the normal of the hemi-ellipse and the velocity towards the orifice centre

d

length of the major axis of a hemi-ellipse

f

length of the mirror axis of a hemi-ellipse

γ

angle between the ultrasound beam and the velocity towards the orifice centre

Q

regurgitant orifice flow

θ

angle between the orifice centre axis and the point of measurement

q

flow contribution from a spherical segment in the proximal velocity field

r

radius from the centre of the orifice inlet to the point of measurement

v

velocity towards the centre of the orifice inlet

vm

velocity measured in the direction of the ultrasound beam

vn

velocity in the direction of the normal to a hemi-elliptical surface

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appleton, C. P., Hatle, L. K., Nellessen, U., Schnittger, I., andPopp, R. L. J. (1990): ‘Flow velocity acceleration in the left ventricle: a useful Doppler echocardiographic sign of hemodynamically significant mitral regurgitation,’J. Am. Soc. Echocardiogr.,3, pp. 35–45Google Scholar
  2. Ask, P., Loyd, D., andWranne, B. (1986): ‘Regurgitant flow through heart valves: A hydraulic model applicable to ultrasound Doppler measurements’,Med. Biol. Eng. Comput.,24, pp. 643–646CrossRefGoogle Scholar
  3. Barclay, S. A., Eidenvall, L., Karlsson, M., Andersson, G., Xiong, C., Ask, P., Loyd, D., andWranne, B. (1993): ‘The shape of the proximal isovelocity surface area varies with regurgitant orifice size and distance from orifice: computer simulation and model experiments using color M-mode technique’,J. Am. Soc. Echocardiogr.6, pp. 433–445Google Scholar
  4. Bargiggia, G. S., Tronconi, L., Raisaro, A., Recusani, F., Ragni, T., Valdes-Cruz, L. M., Sahn, D. J., andMontemartini, C. (1990): ‘Color Doppler diagnosis of mechanical prosthetic mitral regurgitation: Usefulness of the flow convergence region proximal to the regurgitant orifice,’Am. Heart J.,120, pp. 1137–1142CrossRefGoogle Scholar
  5. Bargiggia, G. S., Tronconi, L., Sahn, D. J., Recusani, F., Raisaro, A., de Servi, S., Valdes-Cruz, L. M., andMontemartini, C. (1991): ‘A new method for quantitation of mitral regurgitation based on color flow Doppler imaging of flow convergence proximal to regurgitant orifice’,Circ.84, pp. 1418–1489Google Scholar
  6. Bolger, A. F., Eidenvall, L., Ask, P., Loyd, D., andWranne, B. (1992): ‘The multiple determinants of continuous wave signal intensity (abstr.)ibid.,86, p. 316Google Scholar
  7. Chen, C., Koschyk, D., Brockhoff, D., Heik, S., Hamm, C., Bleifeld, W., andKupper, W. (1993): ‘Noninvasive estimation of regurgitant flow rate and volume in patients with mitral regurgitation by Doppler color mapping of accelerating flow field’,J. Am. Coll. Cardiol.,21, pp. 374–383Google Scholar
  8. Eidenvall, L., Janerot Sjöberg, B., Ask, P., Loyd, D., andWranne, B. (1992): ‘2D color Doppler flow velocity profiles can be time corrected with an external ECG delay device’,J. Am. Soc. Echocardiogr.,5, pp. 405–413Google Scholar
  9. Giesler, M., andStauch, M. (1992): ‘Color Doppler determination of regurgitant flow: from proximal isovelocity surface areas to proximal velocity profiles’,Echocardiogr.,9, pp. 51–62Google Scholar
  10. Giesler, M., Grossmann, G., Smidt, A., Kochs, M., Langhans, J., Stauch, M., andHombach, V. (1993): ‘Color Doppler echocardiographic determination of mitral regurgitant flow from the proximal velocity profile of the flow convergence region’,Am. J. Cardiol.,71, pp. 217–224CrossRefGoogle Scholar
  11. Helmcke, F., Nanda, N. C., Hsiung, M. C., Sotot, B., Adey, C. K., Goyal, R. G., andGatewood, R. P. (1987): ‘Color Doppler assessment of mitral regurgitation with orthogonal planes’,Circ.,75, pp. 175–183Google Scholar
  12. Jenni, R., Eberli, F., Grimm, J., andKrayenbuehl, H. P. (1989): ‘Quantification of mitral regurgitation with amplitude-weighted mean velocity from continuous wave Doppler spectra’,ibid.,,79, pp. 1294–1299Google Scholar
  13. Klein, A. L., Bailey, A. S., Cohen, G. L., Stewart, W. J., Duffy, C. L., Pearce, G. L., andSalcedo, E. E. (1993): ‘Importance of sampling both pulmonary veins in grading mitral regurgitation by transesophageal echocardiography’,J. Am. Soc. Echocardiogr.,6, pp. 115–123Google Scholar
  14. Levine, R. A. (1991): ‘Doppler color mapping of the proximal flow convergence region: a new quantitative physiologic tool’,J. Am. Coll. Cardiol.,18, pp. 833–836Google Scholar
  15. Linker, D. T., Johansen, E., Torp, H., andAngelsen, B. A. J. (1988): ‘Practical considerations and design of a digital system for acquisition of two-dimensional ultrasonic tissue and flow data’,Echocardiogr.,5, pp. 485–494Google Scholar
  16. Miyatake, K., Izumi, S., Okamoto, M., Kinoshita, N., Asonuma, H., Nakagawa, H., Yamamoto, K., Takamiya, M., andSakakibara, H. (1986): ‘Semiquantitative grading of severity of mitral regurgitation by real-time two dimensional Doppler flow imaging technique’,J. Am. Coll. Cardiol.,7, pp. 82–88Google Scholar
  17. Moises, V. A., Maiel, B. C., Hornberger, L. K., Murillo-Olivas, A., Valdes-Cruz, L. M., Sahn, D. T., andWeintraub, R. G. (1991): ‘A new method for noninvasive estimation of ventricular septal defect shunt flow by Doppler color flow mapping: Imaging of the laminar flow convergence region on the left septal surface’,ibid.,,18, pp. 824–832Google Scholar
  18. Ohlsson, J., Wranne, B., andMarklund, T. (1985): ‘Noninvasive assessment of aortic and mitral regurgitation’,Eur. Heart. J.,6, pp. 851–857Google Scholar
  19. Otsuji, J., Tei, C., Kisakuki, A., Natsugoe, K., andKawazoke, Y. (1987): ‘Color Doppler echocardiographic assessment of the change in the mitral regurgitant volume’,Am. Heart J.,114, pp. 349–354CrossRefGoogle Scholar
  20. Recusani, F., Bargiggia, G. S., Yoganathan, A. P., Raisaro, A., Valdes-Cruz, L. M., Sung, H. W., Bertucci, C., Gallati, M., Moises, V. A., Simpson, I. A., Tronconi, L., andSahn, D. J. (1991): ‘A new method for quantification of regurgitant flow rate using color Doppler flow imaging of the flow convergence region proximal to a discrete orifice: anin-vitro study’,Circ.,83, pp. 594–604Google Scholar
  21. Rodriguez, L., Anconina, J., Flashskampf, F. A., Weyman, A. E., Levine, R. A., andThomas, J. D. (1992): ‘Impact of finite orifice size on proximal flow: implications for Doppler quantification of valvular regurgitation’,Circ. Res.,70, pp. 923–930Google Scholar
  22. Sahn, D. J. (1988): ‘Instrumentation and physical factors related to visualization of stenotic and regurgitant jets by Doppler color flow mapping’,J. Am. Coll. Cardiol.,12, pp. 1354–1365Google Scholar
  23. Samstad, S. O., Torp, H. G., Matre, K., Rossvoll, O., Segadal, L., andPiene, H. (1989a): ‘Instantaneous cross-section flow velocity profiles: A comparative study of two ultrasound Doppler methods applied to anin vitro pulsatile model’,J. Am. Soc. Echocardiogr.,3, pp. 451–464Google Scholar
  24. Samstad, S. O., Torp, H. G., Linker, D. T., Rossvoll, O., Skjaerpe, T., Johansen, E., Kristoffersen, K., Angelsen, B. A. J., andHatle, L. (1989b): ‘Cross-sectional early mitral flow velocity profiles from color Doppler’,Br. Heart J.,62, pp. 177–184Google Scholar
  25. Thomas, J. D., Liu, C. M., Flashskampf, F. A., O'Shea, J. P., Davidoff, R., andWeyman, A. E. (1990): ‘Quantification of the jet flow by momentum analysis: Anin vitro color Doppler flow study’,Circ.,81, pp. 247–259Google Scholar
  26. Utsonomiya, T., Ogawa, T., King, S. W., Sundada, E., Lobodzinski, S. M., Henry, W. L., andGardin, J. M. (1990): ‘Pitfalls in the display of color Doppler jet areas: Combined variability due to Doppler angle, frame rate, and scanning direction’,Echocardiogr.,7, pp. 739–45Google Scholar
  27. Utsunomiya, T., Ogawa, T., Doshi, R., Patel, D., Quan, M., Henry, W. L., andGardin, J. M. (1991a): ‘Doppler color flow “proximal isovelocity surface area” method for estimating volume flow rate: effects of orifice shape and machine factors’,J. Am. Coll. Cardiol.,17, pp. 1103–1111CrossRefGoogle Scholar
  28. Utsunomiya, T., Ogawa, T., Tang, H. A., Doshi, R., Patel, D., Quan, M., Henry, W. L., andGardin, J. M. (1991b): ‘Doppler color flow mapping of the proximal isovelocity surface area: A new method for measuring volume flow rate across a narrowed orifice’,J. Am. Soc. Echocardiogr.,4, pp. 338–348Google Scholar
  29. Utsonomiya, T., Patel, D., Doshi, R., Quan, M., andGardin, J. M. (1992a): ‘Can signal intensity of the continuous wave Doppler regurgitant jet estimate severity of mitral regurgitation?’Am. Heart J.,123, pp. 166–171CrossRefGoogle Scholar
  30. Utsonomiya, T., Doshi, R., Patel, D., Nguyen, D., Mehta, K., andGardin, J. M. (1992b): ‘Regurgitant volume estimation in patients with mitral regurgitation: initial studies using the color Doppler “proximal isovelocity surface area” method’,Echocardiogr.,9, pp. 63–70Google Scholar
  31. Vandervoort, P. M., Thoreau, A., Weyman, E., andThomas, J. D., (1991): ‘Wall filtering significantly increases Doppler velocity in proximal flow convergence (abstr.),’Circ.,84, p. II-894Google Scholar
  32. Wranne, B., Loyd, D., andAsk, P. (1985): ‘Quantification of heart valve regurgitation: A critical analysis from a theoretical and experimental point of view’,Clin. Physiol.5, pp. 81–88Google Scholar

Copyright information

© IFMBE 1995

Authors and Affiliations

  • L. Eidenvall
    • 1
  • S. Barclay
    • 2
  • D. Loyd
    • 3
  • B. Wrannel
    • 2
  • P. Ask
    • 1
  1. 1.Department of Biomedical EngineeringUniversity of LinköpingLinköpingSweden
  2. 2.Department of Clinical PhysiologyUniversity of LinköpingLinköpingSweden
  3. 3.Department of Applied Thermodynamics & Fluid MechanicsUniversity of LinköpingLinköpingSweden

Personalised recommendations