, Volume 31, Issue 4, pp 385–392 | Cite as

Sphingomyelin metabolism is linked to salt transport in the gills of euryhaline fish

  • Mohammed El Babili
  • Gérard Brichon
  • Georges Zwingelstein


Byin vivo andin vitro studies ofl-(3-3H)serine and [9,10(n)-3H]palmitic acid incorporation into phospholipids, we show a change in the renewal of the ceramide moiety of sphingomyelin in the gills of euryhaline fish (sea bass and eels) when the animals were subjected to abrupt alterations in environmental salinity.In vivo, decrease of the salinity from sea water (salinity 3.7%) to diluted sea water (salinity 1%) induced an increase of label incorporation into gill sphingomyelin. The same was true when gills from sea water-adapted sea bass or sea water-adapted eels were incubated in diluted sea water. A decrease in free ceramides synthesis was also observed in the gills of sea water-adapted sea bass when the salinity of the incubation medium was reduced. Direct inhibition of Na+/K+-ATPase activity with ouabain decreased the sphingomyelin synthesis in the gills of sea bass duringin vitro incubation in diluted sea water, whereas treatment with furosemide stimulated sphingomyelin synthesis in the same gills incubated in sea water. These findings indicate that changes in Na+ fluxes modify the sphingomyelin turnover and control the production of free ceramides and sphingosine in gill cells of euryhaline fish. In view of the well-known effects of these sphingomyelin degradation products on isolated tumor cell differentiation, we suggest that they play a very important role in modulating chloride cell distribution and metabolism of fish gills during abrupt changes in environmental salinity.


Salt Water Ceramides Ouabain Amiloride Sphingosine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





5-[aminosulfonyl]-4-chloro-2-[(2-furanylmethyl)-amino] benzoic acid


fresh water












sea water


thin-layer chromatography


12-0-tetradecanoylphorbol 13-acetate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Whitney, J.O. (1974) The Effect of External Salinity upon Lipid Synthesis in the Blue CrabCallinectes sapidus Rathbun and the Spider CrabLibinia emarginata Leech.Comp. Biochem. Physiol. 49A, 433–440.CrossRefGoogle Scholar
  2. 2.
    Zwingelstein, G. (1982) Les Lipides Amphiphiles du Poisson, inNutrition du Poisson (Fontaine, M., ed.) pp. 249–262, Editions du CNRS, Paris.Google Scholar
  3. 3.
    Chapelle, S. (1984) Contribution à l'Etude du Métabolisme des Phospholipides chez les Crustacés, Ph.D. Thesis, Université de Liége, Liège, Belgium, pp. 23–87.Google Scholar
  4. 4.
    Sargent, J.R., Bell, J.G., Bell, M.V., Henderson, R.J. and Tocher, D.R. (1993) The Metabolism of Phospholipids and Polyunsaturated Fatty Acids in Fish, inAquaculture (Lalhou, B., and Vitiello, P., eds.) pp. 103–124, American Geophysical Union, Washington.Google Scholar
  5. 5.
    Chapelle, S., Dandrifosse, G., and Zwingelstein, G. (1976) Metabolism of Phospholipids of Anterior or Posterior Gills of the CrabEriocheir sinensis M. Edw. During the Adaptation of This Animal to Media of Various Salinities,Int. J. Biochem. 7, 343–351.CrossRefGoogle Scholar
  6. 6.
    Zwingelstein, G. (1979-1980) Les Effets de l'Adaptation à l'Eau de Mer sur le Métabolisme Lipidique du Poisson,Oceanis 5, 117–130.Google Scholar
  7. 7.
    Chapelle, S., and Zwingelstein, G. (1984) Phospholipid Composition and Metabolism of Crustacean Gills as Related to Changes in Environmental Salinities: Relationship Between Na+/K+ ATPase Activity and Phospholipids,Comp. Biochem. Physiol. 78B, 363–372.Google Scholar
  8. 8.
    Merrill, A.H., and Jones, D.D. (1990) An Update of the Enzymology and Regulation of Sphingomyelin Metabolism,Biochim. Biophys. Acta 1044, 1–12.PubMedGoogle Scholar
  9. 9.
    Payan, P., Girard, J.P., and Mayer-Gostan, N. (1984) inFish Physiology (Hoar, W.S., Randall, D.J., and Brett, J.R., eds.) pp. 241–283, Academic Press, London.Google Scholar
  10. 10.
    Péqueux, A., and Gilles, R. (1981) Na+ Fluxes Across Isolated Perfused Gills of Chinese CrabEriocheir sinensis.J. Exp. Zool. 92, 173–186.Google Scholar
  11. 11.
    Krogh, A. (1939)Osmotic Regulation in Aquatic Animals, Cambridge University Press, London, New York.Google Scholar
  12. 12.
    Maetz, J. (1974) inBiochemical and Biophysical Perspectives in Marine Biology (Malins, D.C., and Sargent, J.R., eds.) Vol. 1, pp. 1–167, Academic Press, London.Google Scholar
  13. 13.
    Zadunaisky, J.A. (1984) The Chloride Cells: Active Transport of Chloride and the Paracellular Pathways, inFish Physiology, (Hoar, W.S., Randall D.J., and Brett, J.R., eds.) pp. 13–176, Academic Press, London.Google Scholar
  14. 14.
    Foskett, J.K., and Scheffey, C. (1982) The Chloride Cells: Definitive Identification as the Salt-Secretory Cells in Teleosts,Science 215, 164–166.PubMedCrossRefGoogle Scholar
  15. 15.
    Neufeld, G.J., Holliday, C.W., and Pritchard, J.B. (1980) Salinity Adaptation of Gill Na,K-ATPase in the Blue Crab,Callinectes sapidus, J. Exp. Zool. 211, 215–224.CrossRefGoogle Scholar
  16. 16.
    Brichon, G. (1984) Régulation Physiologique du Métabolisme des Glycérophospholipides Azotés chez l'Anguille Européenne. Effets de l'Adaptation en Eau Douce ou en Eau de Mer à Deux Températures (12 et 22°C), Thèse es-sciences naturelles Universite Claude Bernard, Lyon, p. 200.Google Scholar
  17. 17.
    Hakomori, S-I. (1981) Glycosphingolipids in Cellular Interaction, Differentiation, and Oncogenesis,Ann. Rev. Biochem. 50, 733–764.PubMedCrossRefGoogle Scholar
  18. 18.
    Hannun, Y.A., and Bell, R.M. (1989) Functions of Sphingolipids and Sphingolipid Breakdown Products in Cellular Regulation,Science 243, 500–507.PubMedCrossRefGoogle Scholar
  19. 19.
    Merrill, A.H., Serini, A.M., Stevens, V.L., Hannun, Y.A., Bell, R.M., and Kinkade Jr., J.M. (1986) Inhibition of Phorbol Ester-Dependent Differentiation of Human Promyelocytic Leukemic (HL-60) Cells by Sphinganine and Other Long-Chain Bases,J. Biol. Chem. 261, 12610–12615.PubMedGoogle Scholar
  20. 20.
    Kim M-Y., Linardic C.M., Karolak L.A., and Hannun, Y.A. (1991) Identification of Sphingomyelin Turnover as an Effector Mechanism for the Action of Tumor Necrosis Factor α and γ-Interferon,J. Biol. Chem. 266, 484–489.PubMedGoogle Scholar
  21. 21.
    Obeid L.M., Linardic, C.M., Karolac, L.A., and Hannun, Y.A. (1993) Programmed Cell Death Induced by Ceramide,Science 259, 1769–1771.PubMedCrossRefGoogle Scholar
  22. 22.
    Folch, J., Lees, M., and Stanley, G.H.S. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues,J. Biol. Chem. 226, 497–509.PubMedGoogle Scholar
  23. 23.
    Chapelle, S., Zwingelstein, G., Meister, R., and Brichon, G. (1979) The Influence of Acclimation Temperature on the Phospholipid Metabolism of an Aquatic Crustacea (Carcinus maenas),J. Exp. Zool. 210, 371–380.CrossRefGoogle Scholar
  24. 24.
    Portoukalian, J., Meister, R., and Zwingelstein, G. (1978) Improved Two-Dimensional Solvent System for Thin-Layer Chromatographic Analysis of Polar Lipids on Silica Gel 60 Precoated Plates,J. Chromatogr. 152, 569–574.CrossRefGoogle Scholar
  25. 25.
    Dittmer, J.C., and Lester, R.L. (1964) A Simple Specific Spray for the Detection of Phospholipids on Thin-Layer Chromatograms,J. Lipid Res. 5, 126–127.Google Scholar
  26. 26.
    Pyrovolakis, J.A., Harry, D.S., Martin, M.J., and McIntyre, N. (1974) A Simple Method for Liquid Scintillation Counting of Weak β-Emitting Labelled Lipids after Separation by Thin-Layer Chromatography,Clin. Chim. Acta 50, 441–444.CrossRefGoogle Scholar
  27. 27.
    Arvidson, G.A.E. (1968) Structural and Metabolic Heterogeneity of Rat Liver Glycerophosphatides,Eur. J. Biochem. 4, 478–486.PubMedCrossRefGoogle Scholar
  28. 28.
    Vance, D.E., and Sweeley, C.C. (1967) Quantitative Determination of the Neutral Glycosyl Ceramides in Human Blood,J. Lipid Res. 8, 621–630.PubMedGoogle Scholar
  29. 29.
    Karlsson, K.A. (1968) Enzymatic Hydrolysis of Sphingomyelins: Use in Structure Analysis,Acta Chem. Scand. 22, 3050–3052.CrossRefGoogle Scholar
  30. 30.
    Gaver, R.C., and Sweeley, C.C. (1965) Methods for Methanolysis of Sphingolipids and Direct Determination of Long-Chain Bases by Gas Chromatography,J. Am. Oil Chem. Soc. 42, 294–298.PubMedGoogle Scholar
  31. 31.
    Gilles, R., and Péqueux, A. (1985) Ion Transport in Crustacean Gills: Physiological and Ultrastructural Approaches, inTransport Processes, Iono- and Osmoregulation: Current Comparative Appraches (Gilles, R., and Gilles-Baillien, M., eds.) pp. 137–158, Springer Verlag, Heidelberg.Google Scholar
  32. 32.
    Kiss, Z., Deli, E., and Kuo, J.F. (1988) Phorbol Ester Stimulation of Sphingomyelin Synthesis in Human Leukemic HL60 Cells,Arch. Biochem. Biophys. 265, 38–42.PubMedCrossRefGoogle Scholar
  33. 33.
    Lannigan, D.A., and Knauf, P.A. (1985) Decreased Intracellular Na+ Concentration is an Early Event in Murine Erythroleukemic Cell Differentiation,J. Biol. Chem. 260, 7322–7324.PubMedGoogle Scholar
  34. 34.
    Mayer, D., and Bernstein, A. (1978) Early Transport Changes during Erythroid Differentiation of Friend Leukemic Cells,J. Cell. Physiol. 94, 275–285.CrossRefGoogle Scholar
  35. 35.
    Besterman, J.M., May Jr., W.S., LeVine, H., Cragoe Jr., E.J., and Cuatrecasas, P. (1985) Amiloride Inhibits Phorbol Ester-Stimulated Na+/H+ Exchange and Protein Kinase C. An Amiloride Analog Selectively Inhibits Na+/H+ Exchange,J. Biol. Chem. 260, 1155–1159.PubMedGoogle Scholar
  36. 36.
    Girard, J-P., Thomson, A.J., and Sargent, J.R. (1977) Adrenalin Induced Turnover of Phosphatidic Acid and Phosphatidy Inositol in Chloride Cells from the Gills ofAnguilla anguilla, FEBS Lett. 73, 267–270.PubMedCrossRefGoogle Scholar
  37. 37.
    Pressley, T.A., Graves, J.S., and Krall, A.R. (1981) Amiloride-Sensitive Ammonium and Sodium Ion Transport in the Blue Crab,Am. J. Physiol. 241, R370–378.PubMedGoogle Scholar
  38. 38.
    Glynn, I.M., and Karlish, S.J.D. (1975) The Sodium Pump,Ann. Rev. Physiol. 37, 13–56.CrossRefGoogle Scholar
  39. 39.
    Payan, P., Matty, A.J., and Maetz, J. (1975) A Study of the Sodium Pump in the Perfused Head Preparation of the TroutSalmo gairdneri in Fresh Water,J. Comp. Physiol. 104, 33–48.Google Scholar
  40. 40.
    Kamiya, M., and Utida, S. (1969) Sodium-Potassium-Activated Adenosinetriposphatase Activity in Gills of Fresh-Water, Marine and Euryhaline Teleosts,Comp. Biochem. Physiol. 31, 671–674.PubMedCrossRefGoogle Scholar
  41. 41.
    Kirschner, L.B., Greenwald, L., and Kerstetter, T.H. (1973) Effect of Amiloride on Sodium Transport Across Body Surfaces of Fresh Water Animals,Am. J. Physiol. 224, 832–837.PubMedGoogle Scholar
  42. 42.
    Greenwald, L., and Kirschner, L.B. (1976) The Effect of Poly-L-Lysine, Amiloride and Methyl-L-Lysine on Gill Ion Transport and Permeability in the Rainbow Trout,J. Memb. Biol. 26, 371–383.CrossRefGoogle Scholar
  43. 43.
    Lavie, Y., Blusztajn, J.K., and Lincovitch, M. (1994) Formation of Endogenous Free Sphingoid Bases in Cells Induced by Changing Medium Conditions,Biochim. Biophys. Acta 1220, 232–238.Google Scholar
  44. 44.
    Hannun, Y.A., and Linardic, C.M. (1993) Spinngolipid Breakdown Products: Anti-Proliferative and Tumor-Suppressor Lipids,Biochim. Biophys. Acta 1154, 223–236.PubMedGoogle Scholar
  45. 45.
    Hannun, Y.A., Loomis, C.R., Merrill Jr., A.H., and Bell, R.M. (1986) Sphingosine Inhibition of Protein Kinase C Activity and Phorbol Dibutyrate Bindingin vitro in Human Platelets,J. Biol. Chem. 261, 12604–12609.PubMedGoogle Scholar
  46. 46.
    Hampton, R.Y., and Morand, O.H. (1989) Sphingomyelin Synthase and PKC Activation,Science 246, 1050.PubMedCrossRefGoogle Scholar
  47. 47.
    Barnholz, Y., Roitman, A., and Gatt, S. (1966) Enzymatic Hydrolysis of Sphingolipids. II. Hydrolysis of Sphingomyelin by an Enzyme from Rat Brain,J. Biol. Chem. 241, 3731–3737.PubMedGoogle Scholar
  48. 48.
    Kolesnick, R.N. (1989) Sphingomyelinase Action Inhibits Phorbol Ester-Induced Differentiation of Human Promyelocytic Leukemic (HL-60) Cells,J. Biol. Chem. 264, 7617–7623.PubMedGoogle Scholar
  49. 49.
    Okazaki, T., Bielawska, A., Bell, R.M., and Hannun, Y.A. (1990) Role of Ceramides as a Lipid Mediator of 1α,25-Dihydroxyvitamin D3-Induced HL-60 Cell Differentiation,J. Biol. Chem. 265, 15823–15831.PubMedGoogle Scholar

Copyright information

© AOCS Press 1996

Authors and Affiliations

  • Mohammed El Babili
    • 1
  • Gérard Brichon
    • 1
  • Georges Zwingelstein
    • 1
  1. 1.Institut Michel PachaUniversité Claude Bernard Lyon ILa Seyne sur MerFrance

Personalised recommendations