Skip to main content
Log in

Purification and characterization of aPenicillium sp. lipase which discriminates against diglycerides

  • Article
  • Published:
Lipids

Abstract

A lipase was isolated fromPenicillium sp. strain UZLM-4 and characterized. This lipase has a molecular weight of 27,344 (determined by mass spectrometry) and hydrolyzes triglycerides in preference to mono- and diglyceride substrates. Among various triglyceride substrates, tributyrin is hydrolyzed about four times faster than any other tested. The lipase has a preference for hydrolysis at the 1,3 positions of the lipids and shows a weak stereoselectivity for the S enantiomer. Unlike most other lipases, this lipase is stable and has a high activity at low surface pressures (5–10 mN/m).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HPLC:

high-performance liquid chromatography

PDMS:

poly(dimethylsiloxane)

References

  1. McKay, A.M. (1993) Microbial Carboxylic Ester Hydrolases (EC 3.1.1) in Food Biotechnology,Letters in Appl. Microbiol. 16, 1–6.

    CAS  Google Scholar 

  2. Sarney, D.B., and Vulfson, E.N. (1995) Application of Enzymes to the Synthesis of Surfactants.TIBTECH 13, 164–172.

    CAS  Google Scholar 

  3. Margolin, A.L. (1993) Enzymes in the Synthesis of Chiral Drugs,Enzyme Microb. Technol. 15, 266–280.

    Article  PubMed  CAS  Google Scholar 

  4. Santaniello, E., Ferraboschi, P., and Grisenti, P. (1993) Lipase-Catalyzed Transesterification in Organic Solvents: Applications to the Preparation of Enantiomerically Pure Compounds,Enzyme Microb. Technol. 15, 367–382.

    Article  CAS  Google Scholar 

  5. Faber, K. (1995)Biotransformations in Organic Chemistry, 2nd edn., pp. 80–105, Springer Verlag, Berlin.

    Google Scholar 

  6. Brzozowski, A.M., Derewenda, U., Derewenda, Z.S., Dodson, E., Dodson, G., Lawson, D., Turkenberg, M., Björkling, F., Huge-Jensen, B., Patkar, S.A., and Thim, L. (1991) A Model for Interfacial Activation in Lipases from the Structure of a Fungal Lipase-Inhibitor Complex,Nature 351, 491–494.

    Article  PubMed  CAS  Google Scholar 

  7. Schrag, J.D., and Cygler, M. (1993) 1.8 Å Refined Structure of the Lipase fromGeotrichum candidum, J. Mol. Biol. 230, 575–591.

    Article  PubMed  CAS  Google Scholar 

  8. Grochulski, P., Li, Y., Schrag, J.D., Bouthillier, F., Smith, P., Harrison, D., Rubin, B., and Cygler, M. (1993) Insights into Interfacial Activation from an Open Structure ofCandida rugosa Lipase,J. Biol. Chem. 268, 12843–12847.

    PubMed  CAS  Google Scholar 

  9. van Tilbeurgh, H., Egloff, M.-P., Martinez, C., Rugani, N., Verger, R., and Cambillau, C. (1993) Interfacial Activation of the Lipase-Procolipase Complex by Mixed Micelles Revealed by X-Ray Crystallography,Nature 362, 814–820.

    Article  PubMed  Google Scholar 

  10. Noble, M.E.M., Cleasby, A., Johnson, L.N., Egmond, M.R., and Frenken, L.G.J. (1993) The Crystal Structure of Triacylglycerol Lipase fromPseudomonas glumae Reveals a Partially Redundant Catalytic Aspartate,FEBS Lett. 331, 123–128.

    Article  PubMed  CAS  Google Scholar 

  11. Derewenda, U., Swenson, L., Green, R., Wei, Y., Dodson, G.G., Yamaguchi, S., Haas, M.J., and Derewenda, Z.S. (1994) Current Progress in Crystallographic Studies of New Lipases from Filamentous Fungi,Nature: Structural Biology 1, 36–47.

    Article  CAS  Google Scholar 

  12. Uppenberg, J., Hansen, M.T., Patkar, S., and Jones, T.A. (1994) The Sequence, Crystal Structure Determination and Refinement of Two Crystal Forms of Lipase B fromCandida antarctica, Structure 2, 293–308.

    Article  PubMed  CAS  Google Scholar 

  13. Huge-Jensen, B., Galluzzo, D.R., and Jensen, R.G. (1987) Partial Purification and Characterization of Free and Immobilized Lipases fromMucor miehei, Lipids 22, 559–565.

    CAS  Google Scholar 

  14. Gilbert, E.J. (1993)Pseudomonas Lipases: Biochemical Properties and Molecular Cloning,Enzyme Microbiol. Technol. 15, 634–645.

    Article  CAS  Google Scholar 

  15. Rúa, M.L., Díaz-Mauriño, T., Fernández, Otero, C., and Ballesteros, A. (1993) Purification and Characterization of Two Distinct Lipases fromCandida cylindracea, Biochim. Biophys. Acta 1156, 181–189.

    PubMed  Google Scholar 

  16. Veeraragavan, K., Colpitts, T., and Gibbs, B.F. (1990) Purification and Characterization of Two Distinct Lipases fromGeotrichum candidum, Biochem. Biophys. Acta 1044, 26–33.

    PubMed  CAS  Google Scholar 

  17. Sidebottom, M., Charton, E., Dunn, P.P.J., Mycock, G., Davies, C., Sutton, J.L., Macrae, A.R., and Slabas, A.R. (1991)Geotrichum candidum Produces Several Lipases with Markedly Different Substrate Specificities,Eur. J. Biochem. 202, 485–491.

    Article  PubMed  CAS  Google Scholar 

  18. Sugihara, A., Shimada, Y., and Tominaga, Y. (1988) Purification and Characterization ofAspergillus niger lipase,Agric Biol. Chem. 52, 1591–1592.

    CAS  Google Scholar 

  19. Torossian, K., and Bell, A.W. (1991) Purification and Characterization of an Acid-Resistant Triacylglycerol Lipase fromAspergillus niger, Biotechnol. Appl. Biochem. 13, 205–211.

    CAS  Google Scholar 

  20. Uyttenbroeck, W., Hendriks, D., Vriend, G., DeBaere, I., Moens, L., and Scharpé, S. (1993) Molecular Characterization of an Extracellular Acid-Resistant Lipase Produced byRhizopus javanicus, Biol. Chem. Hoppe-Seyler 374, 245–254.

    PubMed  CAS  Google Scholar 

  21. Oi, S., Sawada, A., and Satomura, Y. (1967) Purification and Some Properties of Two Types ofPenicillium Lipase, I and II, and Conversion of Types I and II Under Various Modification Conditions,Agr. Biol. Chem. 31, 1357–1366.

    CAS  Google Scholar 

  22. Iwai, M., Okumura, S., and Tsujisaka, Y. (1975) The Comparison of the Properties of Two Lipases fromPenicillium cyclopium Westring,Agr. Biol. Chem., 39, 1063–1070.

    CAS  Google Scholar 

  23. Okumura, S., Iwai, M., and Tsujisaka, Y. (1980) Purification and Properties of Partial Glyceride Hydrolase ofPenicillium cyclopium M1,J. Biochem. 87, 205–211.

    PubMed  CAS  Google Scholar 

  24. Isobe, K., Akiba, T., and Yamaguchi, S. (1988) Crystallization and Characterization of Lipase fromPenicillium cyclopium, Agr. Biol. Chem. 52, 41–47.

    CAS  Google Scholar 

  25. Yamaguchi, S., and Mase, T. (1991) Purification and Characterization of Mono- and Diacylglycerol Lipase fromPenicillium camembertii U-150,Appl. Microbiol. Biotechnol. 34, 720–725.

    Article  CAS  Google Scholar 

  26. Maliszewska, I., and Mastalerz, P. (1992) Production and Some Properties of Lipase fromPenicillium citrinum.Enzyme Microb. Technol. 14, 190–193.

    Article  CAS  Google Scholar 

  27. Sztajer, H., Lünsdorf, H., Erdmann, H., Menge, U., and Schmid, R. (1992) Purification and Properties of Lipase fromPenicillium simplicissimum, Biochim. Biophys. Acta 1124, 253–261.

    PubMed  CAS  Google Scholar 

  28. Stöcklein, W., Sztajer, H., Menge, U., and Schmid, R.D. (1993) Purification and Properties of a Lipase fromPenicillium expansum, Biochim. Biophys. Acta 1168, 181–189.

    PubMed  Google Scholar 

  29. Matsudaira, P. (1987) Sequence from Picomole Quantities of Proteins Electroblotted onto Polyvinylidene Difluoride Membranes,J. Biol. Chem. 262, 10035–10038.

    PubMed  CAS  Google Scholar 

  30. Hewick, R.M., Hunkapiller, M.W., Hood, L.E., and Dreyer, W.J. (1983) A Gas Liquid Solid Phase Peptide and Protein Sequenator,J. Biol. Chem. 256, 7990–7997.

    Google Scholar 

  31. Jette, J.F., and Ziomek, E. (1994) Determination of Lipase Activity by a Rhodamine-Triglyceride-Agarose Assay,Anal. Biochem. 219, 256–260.

    Article  PubMed  CAS  Google Scholar 

  32. Ziomek, E., Doudret, I., Ivanova, M.G., and Verger, R. (1996) Interaction of Poly(dimethylsiloxane) with Triglycerides in Monomolecular Films and Application to Lipase Kinetics,Chem. Phys. Lipids in press.

  33. Ergan, F., and Andre, G. (1989) Simple High Performance Liquid Chromatography Methods for Monitoring Lipase Reactions,Lipids 24, 76–78.

    PubMed  CAS  Google Scholar 

  34. Verger, R., and Pattus, F. (1982) Lipid-Protein Interactions in Monolayers,Chem. Phys. Lip. 30, 189–227.

    Article  CAS  Google Scholar 

  35. Bairoch, A., and Boeckmann, B. (1994) The SWISS-PROT Protein Sequence Data Bank: Current Status,Nucleic Acids Res. 22, 3578–3580.

    PubMed  CAS  Google Scholar 

  36. Yamaguchi, S., Mase, T., and Takeuchi, K. (1991) Cloning and Structure of the Mono- and Diacylglycerol Lipase-Encoding Gene fromPenicillium camembertii U-150,Gene 103, 61–67.

    Article  PubMed  CAS  Google Scholar 

  37. Rogalska, E., Cudrey, C., Ferrato, F., and Verger, R. (1993) Stereoselective Hydrolysis of Triglycerides by Animal and Microbial Lipases,Chirality 5, 24–30.

    Article  PubMed  CAS  Google Scholar 

  38. Laurent, S., Ivanova, M.G., Pioch, D., Graille, J., and Verger, R. (1994) Interactions Between β-Cyclodextrin and Insoluble Glyceride Monomolecular Films at the Argon/Water Interface: Applications to Lipase Kinetics,Chem. Phys. Lipids 70, 35–42.

    Article  PubMed  CAS  Google Scholar 

  39. Rogalska, E., Nury, S., Douchet, I., and Verger, R. (1995) Lipase Stereo- and Regioselectivity Towards Three Isomers of Dicaprin, a Kinetic Study by the Monomolecular Film Technique,Chirality 7, 505–515.

    Article  CAS  Google Scholar 

  40. Bensadoun, A., and Weinstein, D. (1976) Assay of Proteins in the Presence of Interfering Materials,Anal. Biochem. 70, 241–250.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Gulomova, K., Ziomek, E., Schrag, J.D. et al. Purification and characterization of aPenicillium sp. lipase which discriminates against diglycerides. Lipids 31, 379–384 (1996). https://doi.org/10.1007/BF02522923

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02522923

Keywords

Navigation