Skip to main content
Log in

Differential alterations of ethanolamine and choline phosphoglyceride metabolism by clofibrate and retinoic acid in human fibroblasts are not mediated by phorbol ester-sensitive protein kinase C

  • Article
  • Published:
Lipids

Abstract

Peroxisomal proliferators and retinoids have been reported to interact to regulate lipid metabolism, particularly β-oxidation of fatty acids. Based on postulated interactions of these agents at the levels of receptors and response elements, we examined whether interactions exist between the peroxisomal proliferator, clofibrate (CLF), and retinoic acid (RA) in modulation of phospholipid turnover in cultured human skin fibroblasts. Treatment of cultured cells with either 25 μM CLF or 1 μM RA alone decreased [14C]ethanolamine incorporation into ethanolamine phosphoglycerides (EPG) by 20–30%, and simultaneous exposure to both agents resulted in additive inhibition. By contrast, [3H]choline incorporation into phospholipid was stimulated 5–30% by incubation with either agent; when CLF and RA were administered together, the stimulatory effects were additive. Different types of pulse-chase studies examining effects on uptake, biosynthesis, and degradation of labelled phospholipids indicated stimulation of EPG degradation and inhibition of phosphatidylcholine degradation by CLF; no effect on catabolism of either phospholipid was observed with RA. Combinations of modifiers of protein kinase activity [4β-12-O-tetradecanoylphorbol-13-acetate (β-TPA), 1-(5-isoquino-linesulfonyl)-2-methylpiperazine dihydrochloride,N-(2′-guanidinoethyl)-5-isoquinolinesulfonamide hydrochloride,bis-indolylmaleimide, staurosporine] indicated that β-TPA-responsive protein kinases were not involved. Accordingly, CLF and RA regulate biosynthesis and degradation of ethanolamine and choline phosphoglycerides in cultured skin fibroblasts by different mechanisms that do not involve classical protein kinase C (PKC) isoforms, even though turnover of phospholipids generating lipid activators of PKC occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CLF:

clofibrate

DMSO:

dimethylsulfoxide

EPG:

ethanolamine phosphoglycerides

HA-1004:

N-(2′-guanidinoethyl)-5-isoquinolinesulfonamide hydrochloride

H-7:

1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride

MEM:

Eagle's minimal essential medium

PKA:

protein kinase A

PKC:

protein kinase C

PLC:

phospholipase C

PLD:

phospholipase D

PMSF:

phenylmethylsulfonylfluoride

PPAR:

peroxisomal proliferator-activated receptor(s)

PtdCho:

phosphatidylcholine

RA:

retinoic acid

β-TPA:

β-12-O-tetradecanoylphorbol-13-acetate

References

  1. Reddy, J.K., and Lalwai, N.D. (1983) Carcinogenesis by Hepatic Peroxisome Proliferators: Evaluation of the Risk of Hypolipidemic Drugs and Industrial Plasticizers to Humans,CRC Crit. Rev. Toxicol. 12, 1–58.

    CAS  Google Scholar 

  2. Lock, E.A., Mitchell., A.M., and Elcombe, C.R. (1989) Biochemical Mechanisms of Induction of Hepatic Peroxisome Proliferation,Ann. Rev. Pharmacol. Toxicol. 29, 145–163.

    Article  CAS  Google Scholar 

  3. Moody, D.E., Gibson, G.G., Grant, D.F., Magdalou, J., and Rao, M.S. (1992) Peroxisome Proliferators, A Unique Set of Drug-Metabolizing Enzyme Inducers: Commentary on a Symposium,Drug Metab. Dispos. 20, 779–791.

    PubMed  CAS  Google Scholar 

  4. Rodriguez, J.C., Gil-Gómez, G., Hegardt, F.G., and Haro, D. (1994) Peroxisome Proliferator-Activated Receptor Mediates Induction of the Mitochondrial 3-Hydroxy-3-Methylglutaryl-CoA Synthase Gene by Fatty Acids,J. Biol. Chem. 269, 18767–18772.

    PubMed  CAS  Google Scholar 

  5. Cannon, J.R., and Eacho, P.I. (1991) Interaction of LY171883 and Other Peroxisome Proliferators with Fatty-Acid-Binding-Protein Isolated from Rat Liver,Biochem. J. 280, 387–391.

    PubMed  CAS  Google Scholar 

  6. Jow, L., and Mukherjee, R. (1995) The Human Peroxisome Proliferator-Activated Receptor (PPAR) Subtype NUC1 Represses the Activation of hPPAR Alpha and Thyroid Hormone Receptors.J. Biol. Chem. 270, 3836–3840.

    Article  PubMed  CAS  Google Scholar 

  7. Dreyer, C., Keller, H., Mahfoudi, A., Laudet, V., Krey, G., and Wahli, W. (1993) Positive Regulation of the Peroxisomal Beta-Oxidation Pathway by Fatty Acids Through Activation of Peroxisome Proliferator-Activated Receptors (PPAR),Biol. Cell 77, 67–76.

    Article  PubMed  CAS  Google Scholar 

  8. Goss, G.D., and McBurney, M.W. (1992) Physiological and Clinical Aspects of Vitamin A and Its Metabolites,Crit. Rev. Clin. Lab. Sci. 29, 185–215.

    PubMed  CAS  Google Scholar 

  9. Gudas, L.J. (1994) Retinoids and Vertebrate Development,J. Biol. Chem. 269, 15399–15402.

    PubMed  CAS  Google Scholar 

  10. Andersen, B., and Rosenfeld, M.G. (1995) Intracellular Receptors. New Wrinkles in Retinoids,Nature 374, 118–119.

    Article  PubMed  CAS  Google Scholar 

  11. Fuller, P.J. (1991) The Steroid Receptor Superfamily: Mechanisms of Diversity,FASEB J. 5, 3092–3099.

    PubMed  CAS  Google Scholar 

  12. Schrader, M., Bendik, I., Becker-Andre, M., and Carlberg, C. (1993) Interaction Between Retinoic Acid and Vitamin D Signaling Pathways.J. Biol. Chem. 268, 17830–17836.

    PubMed  CAS  Google Scholar 

  13. Issemann, I., Prince, R.A., Tugwood, J.D., and Green, S. (1993) The Retinoid X Receptor Enhances the Function of the Peroxisome Proliferator Activated Receptor,Biochimie 75, 251–256.

    Article  PubMed  CAS  Google Scholar 

  14. Kliewer, S.A., Umesono, K., Nooman, D.J., Heyman, R.A., and Evans, R.M. (1992) Convergence of 9-cis Retinoic Acid and Peroxisome Proliferator Signalling Pathways Through Heterodimer Formation of Their Receptors,Nature 358, 771–774.

    Article  PubMed  CAS  Google Scholar 

  15. Gearing, K.L., Gottlicher, M., Teboul, M., Widmark, E., and Gustafsson, J.-A. (1993) Interaction of the Peroxisome-Proliferator-Activated Receptor and Retinoid X Receptor,Proc. Natl. Acad. Sci. USA 90, 1440–1444.

    Article  PubMed  CAS  Google Scholar 

  16. Thorne, P.C., Byers, D.M., Palmer, F.B.St.C., and Cook, H.W. (1994) Clofibrate and Other Peroxisome Proliferating Agents Relatively Specifically Inhibit Synthesis of Ethanolamine Phosphoglycerides in Cultured Human Fibroblasts,Biochim. Biophys. Acta Lipids Lipid Metab. 1214, 161–170.

    Article  CAS  Google Scholar 

  17. Cook, H.W., Byers, D.M., Palmer, F.B.St.C., and Spence, M.W. (1989) Alterations of Phospholipid Metabolism by Phorbol Esters and Fatty Acids Occur by Different Intracellular Mechanisms in Cultured Glioma, Neuroblastoma, and Hybrid Cells,J. Biol. Chem. 264, 2746–2752.

    PubMed  CAS  Google Scholar 

  18. Pelech, S.L., and Vance, D.E. (1984) Regulation of Phosphatidylcholine Biosynthesis,Biochim. Biophys. Acta 779, 217–251.

    PubMed  CAS  Google Scholar 

  19. Vance, D.E. (1991), inBiochemistry of Lipids, Lipoproteins and Membranes (Vance, D.E., and Vance, J.E., eds.) pp. 205–240, Elsevier, New York.

    Google Scholar 

  20. Watanabe, T., Okawa, S., Itoga, H., Imanaka, T., and Suga, T. (1992) Involvement of Calmodulin-and Protein Kinase C-Related Mechanism in an Induction Process of Peroximal Fatty Acid Oxidation-Related Enzymes by Hypolipidemic Peroxisome Proliferators,Biochim. Biophys. Acta Mol. Cell Res. 135, 84–90.

    Article  Google Scholar 

  21. Kumar, R., Shoemaker, A.R., and Verma, A.K. (1994) Retinoic Acid Nuclear Receptors and Tumor Promotion: Decreased Expression of Retinoic Acid Nuclear Receptors by the Tumor Promoter 12-O-Tetradecanoylphorbol-13-Acetate,Carcinogenesis 15, 701–705.

    PubMed  CAS  Google Scholar 

  22. Bouzinba-Segard, H., Fan, X.-T., Perderiset, M., and Castagna, M. (1994) Synergy Between Phorbol Esters and Retinoic Acid in Inducing Protein Kinase C Activation,Biochem. Biophys. Res. Commun. 204, 112–119.

    Article  PubMed  CAS  Google Scholar 

  23. Nishizuka, Y. (1992) Intracellular Signaling by Hydrolysis of Phospholipids and Activation of Protein Kinase C,Science 258, 607–614.

    Article  PubMed  CAS  Google Scholar 

  24. Spence, M.W., Cook, H.W., Byers, D.M., and Palmer, F.B.St.C. (1990) The Role of Sphingomyelin in Phosphatidylcholine Metabolism in Cultured Human Fibroblasts from Control and Sphingomyelin Lipidosis Patients and in Chinese Hamster Ovary Cells,Biochem. J. 268, 719–724.

    PubMed  CAS  Google Scholar 

  25. Lowry, O.H., Rosebrough, N.T., Farr, A.L., and Randall, R.J. (1951) Protein Measurement with the Folin Phenol Reagent.J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  26. Thomas, S.E., Morris, S.J., Xu, Z., Byers, D.M., Palmer, F.B.St.C., Spence, M.W., and Cook, H.W. (1992) Polyunsaturated Fatty Acid Incorporation into Plasmalogens in Plasma Membrane of Glioma Cells Is Preceded Temporally by Acylation in Microsomes,Biochim. Biophys. Acta Lipids Lipid Metab. 1126, 125–134.

    Article  CAS  Google Scholar 

  27. McNulty, S., Lloyd, G.S., Rumsby, R.M., Sayner, R.M., and Rumsby, M.G. (1992) Ethanolamine Is Released from Glial Cells in Primary Culture on Stimulation with Foetal Calf Serum and Phorbol Ester,Neurosci. Lett. 139, 183–187.

    Article  PubMed  CAS  Google Scholar 

  28. Kiss, Z. (1992) The Long-Term Combined Stimulatory Effects of Ethanol and Phorbol Ester on Phosphatidylethanolamine Hydrolysis Are Mediated by a Phospholipase C and Prevented by Overexpressed Alpha-Protein Kinase C in Fibroblasts,Eur. J. Biochem. 209, 467–473.

    Article  PubMed  CAS  Google Scholar 

  29. Tronchère, H., Record, M., Tercé, F., and Chap, H. (1994) Phosphatidylcholine Cycle and Regulation of Phosphatidylcholine Biosynthesis by Enzyme Translocation,Biochim. Biophys. Acta Lipids Lipid Metab. 1212, 137–151.

    Article  Google Scholar 

  30. Byers, D.M., Palmer, F.B.St.C., Spence, M.W., and Cook, H.W. (1993) Dissociation of Phosphorylation and Translocation of a Myristoylated Protein Kinase C Substrate (MARCKS Protein) in C6 Glioma and NIE-115 Neuroblastoma Cells,J. Neurochem. 60, 1414–1421.

    Article  PubMed  CAS  Google Scholar 

  31. Hannun, Y., Loomis, C.R., and Bell, R.M. (1985) Activation of Protein Kinase C by Triton X-100 Mixed Micelles Containing Diacylglycerol and Phosphatidylserine,J. Biol. Chem. 260, 10039–10043.

    PubMed  CAS  Google Scholar 

  32. Cook, H.W., and Spence, M.W. (1989) Dideoxycytidine, An Anti-HIV Drug, Selectively Inhibits Growth But Not Phosphatidylcholine Metabolism in Neuroblastoma and Glioma Cells,Neurochem. Res. 14, 279–284.

    Article  PubMed  CAS  Google Scholar 

  33. Hidaka, H., Inagaki, M., Kawamoto, S., and Sasaki, Y. (1984) Isoquinolinesulfonamides, Novel and Potent Inhibitors of Cyclic Nucleotide Dependent Protein Kinase and Protein Kinase C,Biochemistry 23, 5036–5041.

    Article  PubMed  CAS  Google Scholar 

  34. Quick, J., Ware, J.A., and Driedger, P.E. (1992) The Structure and Biological Activities of the Widely Used Protein Kinase Inhibitor, H7, Differ Depending on the Commercial Source,Biochem. Biophys. Res. Commun. 187, 657–663.

    Article  PubMed  CAS  Google Scholar 

  35. Ward, N.E., and O'Brian, C.A. (1992) Kinetic Analysis of Protein Kinase C Inhibition by Staurosporine: Evidence That Inhibition Entails Inhibitor Binding at a Conserved Region of the Catalytic Domain But Not Competition with SubstratesMol. Pharmacol. 41, 387–392.

    PubMed  CAS  Google Scholar 

  36. Toullec, D., Pianetti, P., Coste H., Bellevergue, P., Grand-Perret, T., Ajakane, M., Baudet, V., Boissin, P., Boursier, E., Loriolle, F., Duhamel, L., Charon, D., and Kirilovsky, J. (1991) TheBis-Indolylmaleimide GF 109203X Is a Potent and Selective Inhibitor of Protein Kinase C,J. Biol. Chem. 266, 15771–15781.

    PubMed  CAS  Google Scholar 

  37. Kawashima, Y., Mizuguchi, H., and Kozuka, H. (1994) Modulation by Dietary Oils and Clofibric Acid of Arachidonic Acid Content in Phosphatidylcholine in Liver and Kidney of Rat: Effects on Prostaglandin Formation in Kidney,Biochim. Biophys. Acta Lipids Lipid Metab. 1210, 187–194.

    Article  CAS  Google Scholar 

  38. Bazan, N.G., Fletcher, B.S., Herschman, H.R., and Mukherjee, P.K. (1994) Platelet-Activating Factor and Retinoic Acid Synergistically Activate the Inducible Prostaglandin Synthase Gene,Proc. Natl. Acad. Sci. USA 91, 5252–5256.

    Article  PubMed  CAS  Google Scholar 

  39. Keller, H., Mahfoudi, A., Dreyer, C., Hihi, A.K., Medin, J., Ozato, K., and Wahli, W. (1993) Peroxisome Proliferator-Activated Receptors and Lipid Metabolism,Ann. NY Acad. Sci. 684, 157–173.

    PubMed  CAS  Google Scholar 

  40. Thangada, S., Alvares, K., Manigo, M., Usman, M.I., Rao, M.S., and Reddy, J.K. (1989) Anin vitro Demonstration of Peroxisome Proliferation and Increase in Peroxisomal Beta-Oxidation System mRNAs in Cultured Rat Hepatocytes Treated with Ciprofibrate,FEBS Lett. 250, 205–210.

    Article  PubMed  CAS  Google Scholar 

  41. Lazarow, P.B., and DeDuve, C. (1976) A Fatty Acyl-CoA Oxidizing System in Rat Liver Peroxisomes: Enhancement by Clofibrate, A Hypolipidemic Drug,Proc. Natl. Acad. Sci. USA 73, 2043–2046.

    Article  PubMed  CAS  Google Scholar 

  42. Gronn, M., Christensen, E., Hagve, T.-A., and Christophersen, B.O. (1992) Effects of Clofibrate Feeding on Essential Fatty Acid Desaturation and Oxidation in Isolated Rat Liver Cells,Biochim. Biophys. Acta Lipids Lipid Metab. 1123, 170–176.

    Article  CAS  Google Scholar 

  43. Haidar, N.E., Andriamampandry, C., Carrara, M., Kanfer, J.N., Freysz, L., Dreyfus, H., and Massarelli, R. (1994) The Conversion of Ethanolamine and of Its Metabolites to Choline in Human Neuroblastoma Clones: Effect of Differentiation Induced by Retinoic Acid,Neurochem. Res. 19, 457–462.

    Article  PubMed  CAS  Google Scholar 

  44. Kawashima, Y., Mizuguchi, H., Musoh, K., and Kozuka, H. (1994) The Mechanism for the Increased Supply of Phosphatidylcholine for the Proliferation of Biological Membranes by Clofibric Acid, a Peroxisome Proliferator,Biochim. Biophys. Acta Lipids Lipid Metab. 1212, 311–318.

    Article  CAS  Google Scholar 

  45. Hardeman, D., Zomer, H.W.M., Schutgens, R.B.H., Tager, J.M., and Van Den Bosch, H. (1990) Effect of Peroxisome Proliferation on Ether Phospholipid Biosynthesizing Enzymes in Rat Liver,Int. J. Biochem. 22, 1413–1418.

    Article  PubMed  CAS  Google Scholar 

  46. Iiri, T., Homma, Y., Ohoka, Y., Robishaw, J.D., Katada, T., and Bourne, H.R. (1995) Potentiation of Gi-Mediated Phospholipase C Activation by Retinoic Acid in HL-60 Cells. Possible Role of G Gamma 2,J. Biol. Chem. 270, 5901–5908.

    Article  PubMed  CAS  Google Scholar 

  47. Donchenko, V., Zannetti, A., and Baldini, P.M. (1994) Insulin-Stimulated Hydrolysis of Phosphatidylcholine by Phospholipase C and Phospholipase D in Cultured Rat Hepatocytes,Biochim. Biophys. Acta Mol. Cell Res. 1222, 492–500.

    Article  CAS  Google Scholar 

  48. De Boland, A.R., Morelli, S., and Boland, R. (1994) 1, 25(OH)2-Vitamin D3 Signal Transduction in Chick Myoblasts Involves Phosphatidylcholine Hydrolysis,J. Biol. Chem. 269, 8675–8679.

    PubMed  Google Scholar 

  49. Dekker, L.V., and Parker, P.J. (1994) Protein Kinase C-A Question of Specificity,Trends Biochem. Sci. 19, 73–77.

    Article  PubMed  CAS  Google Scholar 

  50. Hirano, M., Hirai, S., Mizuno, K., Osada, S., Hosaka, M., and Ohno, S. (1995) A Protein Kinase C Isozyme, nPKC Epsilon, Is Involved in the Activation of NF-Kappa B by 12-O-Tetradecanoylphorbol-13-Acetate (TPA) in Rat 3Y1 Fibroblasts,Biochem. Biophys. Res. Commun. 206, 429–436.

    Article  PubMed  CAS  Google Scholar 

  51. Hanafin, N.M., Persons, K.S., and Holick, M.F. (1995) Increased PKC Activity in Cultured Human Keratinocytes and Fibroblasts After Treatment with 1 Alpha, 25-Dihydroxyvitamin D3,J. Cell Biochem. 57, 362–370.

    Article  PubMed  CAS  Google Scholar 

  52. Périanin, A., Combadière, C., Pedruzzi, E., Djerdjouri, B., and Hakim, J. (1993) Staurosporine Stimulates Phospholipase D Activation in Human Polymorphonuclear Leukocytes,FEBS Lett. 315, 33–37.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Mandla, S.G., Byers, D.M., Ridgway, N.D. et al. Differential alterations of ethanolamine and choline phosphoglyceride metabolism by clofibrate and retinoic acid in human fibroblasts are not mediated by phorbol ester-sensitive protein kinase C. Lipids 31, 747–755 (1996). https://doi.org/10.1007/BF02522891

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02522891

Keywords

Navigation