Lipids

, Volume 31, Issue 7, pp 671–701 | Cite as

The chemistry and antioxidant properties of tocopherols and tocotrienols

  • Afaf Kamal-Eldin
  • Lars-Åke Appelqvist
Review

Abstract

This article is a review of the fundamental chemistry of the tocopherols and tocotrienols relevant to their antioxidant action. Despite the general agreement that α-tocopherol is the most efficient antioxidant and vitamin E homologuein vivo, there was always a considerable discrepancy in its “absolute” and “relative” antioxidant effectivenessin vitro, especially when compared to γ-tocopherol. Many chemical, physical, biochemical, physicochemical, and other factors seem responsible for the observed discrepancy between the relative antioxidant potencies of the tocopherolsin vivo andin vitro. This paper aims at highlighting some possible reasons for the observed differences between the tocopherols (α-, β-, γ-, and δ-) in relation to their interactions with the important chemical species involved in lipid peroxidation, specifically trace metal ions, singlet oxygen, nitrogen oxides, and antioxidant synergists. Although literature reports related to the chemistry of the tocotrienols are quite meager, they also were included in the discussion in virtue of their structural and functional resemblance to the tocopherols.

Abbreviations

ESR

electron spin resonance

LDL

low density lipoprotein

NO

nitric oxide

PUFA

polyunsaturated fatty acids

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schultz, H.W., Day, E.A., and Sinnhuber, R.D. (eds.) (1962)Symposium on Foods: Lipids and Their Oxidation, AVI Publishing Co., Westport.Google Scholar
  2. 2.
    Korycha-Dahl, M., and Richardson, T. (1978) Activated Oxygen Species and Oxidation of Food Constituents,CRC Crit. Rev. Food Sci. Nut. 10, 209–241.Google Scholar
  3. 3.
    Simic, M.G. (1981) Free Radical Mechanisms in Autoxidation Processes,J. Chem. Educ. 58, 125–131.Google Scholar
  4. 4.
    Allen, J.C., and Hamilton, R.J. (1983)Rancidity in Foods, Applied Science Publishers, Barking.Google Scholar
  5. 5.
    Frankel, E.N. (1984) Chemistry of Free Radical and Singlet Oxidation of Lipids,Prog. Lipid Res. 23, 197–321.PubMedCrossRefGoogle Scholar
  6. 6.
    Min, D.B. and Smouse, T.H. (1985)Flavor Chemistry of Fats and Oils, American Oil Chemists' Society, Champaign.Google Scholar
  7. 7.
    Aruoma, O.I. (1991) Prooxidant Properties: An Important Consideration for Food Additives and/or Nutrient Components?, inFree Radicals and Food Additives (O.I. Aruoma, and B. Halliwell, eds.), pp. 173–194, Taylor & Francis, London.Google Scholar
  8. 8.
    Freeman, B.A., and Crapo, J.D. (1982). Biology of Disease, Free Radicals and Tissue Injury,Laboratory Investigation 47, 412–426.PubMedGoogle Scholar
  9. 9.
    Cross, C.E. (1987) Oxygen Radicals and Human Disease,Ann. Internal Med. 107, 526–545.Google Scholar
  10. 10.
    Halliwell, B., and Gutteridge, J.M.C. (1989)Free Radicals in Biology and Medicine, Oxford University Press, Oxford.Google Scholar
  11. 11.
    Ingold, K.U. (1962) Metal Catalysis, inSymposium on Foods: Lipids and Their Oxidation (Schultz, H.W., Day, E.A., and Sinnhuber, R.O., eds.), pp. 93–121, AVI Publishing Company, Westport.Google Scholar
  12. 12.
    Karel, M. (1980) Lipid Oxidation: Secondary Reactions and Water Activity of Foods, inAutoxidation in Food and Biological Systems (Simic, E.M., and Karel, M., eds.), pp. 191–206, Plenum Press, New York.Google Scholar
  13. 13.
    Simic, M.G., and Karel, M. (1980)Autoxidation in Food and Biological Systems, Plenum Press, New York.Google Scholar
  14. 14.
    Kanner, J., German J.B., and Kinsella, J.E. (1987) Initiation of Lipid Peroxidation in Biological Systems,CRC Crit. Rev. Food Sci. Nutr. 25, 317–364.Google Scholar
  15. 15.
    Chan, H.W.-S. (1987) The Mechanism of Autoxidation, inAutoxidation of Unsaturated Lipids (Chan, H.W.S., ed.), pp. 1–16, Academic Press, London.Google Scholar
  16. 16.
    McCay, P.B., Fong, K.L., Lai, E.K., and King, M.M. (1978) Possible Role of Vitamin E as a Free Radical Scavenger and Singlet Oxygen Quencher in Biological Systems Which Initiate Radical-Mediated Reactions, inTocopherol, Oxygen and Biomembranes (deSuve, C., and Hayaishi, O., eds.), Elsevier/North Holland Biochemical Press, Amesterdam.Google Scholar
  17. 17.
    Oski, F.A. (1980) Vitamin E—A Radical Defense,New Engl. J. Med. 303, 454–455.PubMedCrossRefGoogle Scholar
  18. 18.
    Machlin, L.J. (1980)Vitamin E: A Comprehensive Treastise, Marcel Dekker, New York.Google Scholar
  19. 19.
    Machlin, L.J. (1984) Vitamin E, inHandbook of Vitamins: Nutritional Biochemical & Clinical Aspects (Machlin, L.J., ed.), 99–145, Marcel Dekker, New York and Basel.Google Scholar
  20. 20.
    Burton, G.W., Joyce, A., and Ingold, K.U. (1982) First Proof That Vitamin E Is Major Lipid-Soluble, Chain-Breaking Antioxidant in Human Blood Plasma,Lancet 2, 327.PubMedCrossRefGoogle Scholar
  21. 21.
    Burton, G.W., Joyce, A., and Ingold, K.U. (1983) Is Vitamin E the Only Lipid-Soluble, Chain-Breaking Antioxidant in Human Blood Plasma and Erythrocyte Membranes,Arch. Biochem. Biophys. 221, 281–290.PubMedCrossRefGoogle Scholar
  22. 22.
    Burton, G.W., Cheesman, K.H., Doba, D., Ingold, K.U., and Slater, T.F. (1983) Vitamin E as an Antioxidantin vitro andin vivo, inBiology of Vitamin E, (Porter, R., and Whelan, J., eds.), pp. 4–18, Ciba Foundation Symposium No. 101, Pitman, London.Google Scholar
  23. 23.
    Fritsma, G.A. (1983) Vitamin E and Autoxidation,Am. J. Med. Technol. 49, 453–456.PubMedGoogle Scholar
  24. 24.
    Parker, R.S. (1989) Dietary and Biochemical Aspects of Vitamin E, inAdvances in Food and Nutrition Research, Vol. 33 (Kinsella, J.E., ed.), pp. 157–232, Academic Press Inc., New York.Google Scholar
  25. 25.
    Burton, G.W., and Traber, M.G. (1990) Vitamin E: Antioxidant Activity, Biokinetics and Bioavailability,Ann. Rev. Nutr. 10, 357–382.CrossRefGoogle Scholar
  26. 26.
    Sies, H. (1986) Biochemistry of Oxidative Stress,Angew Chem. 98, 1061–1076.Google Scholar
  27. 27.
    Sies, H., and Murphy, M.E. (1991) Role of Tocopherols in the Protection of Biological Systems Against Oxidative Damage,J. Photochem. Photobiol.: B. Biol. 8, 211–224.CrossRefGoogle Scholar
  28. 28.
    Sies, H., Stahl, W., and Sundqvist, A.R. (1992) Antioxidant Functions of Vitamins: Vitamins E and C, Beta-Carotene and Other Carotenoid, inBeyond Difficiency (Sauberlich, E., and Machlin, L.J., eds.) New York Acta,Ann. N.Y. Acad. Sci. 669, 7–20.Google Scholar
  29. 29.
    van Acker, S.A.B.E., Koymans, L.M.H., and Bast, A. (1993) Molecular Pharmacology of Vitamin E: Structural Aspects of Antioxidant Activity,Free Rad. Biol. Med. 15, 311–328.PubMedCrossRefGoogle Scholar
  30. 30.
    Labuza, T.P. (1971) Kinetics of Lipid Oxidation in Foods,CRC Crit. Rev. Food Technol. 2, 355–405.CrossRefGoogle Scholar
  31. 31.
    Hess, J.L. (1993) Vitamin E: α-Tocopherol, inAntioxidants in Higher Plants (Alscher, R.G., and Hess, J.L., eds.) pp. 111–134, CRC Press, Boca Raton.Google Scholar
  32. 32.
    Combs, G.F., Jr. (1992) Vitamin E, inThe Vitamins: Fundamental Aspects in Nutrition & Health, pp. 179–203, Academic Press Inc., San Diego.Google Scholar
  33. 33.
    Bauernfeind, J.C., and Desai, I.D. (1977) The Tocopherol Content of Food and Influencing Factors,CRC Crit. Rev. Food Sci. Nutr. 8, 337–382.PubMedGoogle Scholar
  34. 34.
    Bauernfeind, J.C. (1980) Tocopherols in Foods, inVitamin E: A Comprehensive Treastise (Machlin, L.J., ed.) Marcel Dekker, New York.Google Scholar
  35. 35.
    McLaughlin, P.J., and Weihrauch, J.L. (1979) Vitamin E Content of Foods,J. Am. Dietitic Assoc. 75, 647–665.Google Scholar
  36. 36.
    Burton, G.W., and Ingold, K.U. (1981) Autooxidation of Biological Molecules. 1. The Antioxidant Activity of Vitamin E and Related Chain-Breaking Phenolic Antioxidantsin vitro, J. Am. Chem. Soc. 103, 6472–6477.CrossRefGoogle Scholar
  37. 37.
    Burton, G.W., and Ingold, K.U. (1986) Vitamin E: Applications of the Principles of Physical Organic Chemistry to the Exploration of Its Structure and Function,Acc. Chem. Res. 19, 194–201.CrossRefGoogle Scholar
  38. 38.
    Burton, G.W., and Ingold, K.U. (1988) Mechanisms of Antioxidant Action: Preventive and Chain-Breaking Antioxidants, inHandbook of Free Radicals and Antioxidants in Biomedicine, Vol. 2 (Miquel, J., ed.) pp. 29–43, CRC Press, Boca Raton.Google Scholar
  39. 39.
    Burton, G.W., and Ingold, K.U. (1989) Vitamin E asin vitro andin vivo Antioxidant,Ann. N.Y. Acad. Sci. 570, 7–22.PubMedGoogle Scholar
  40. 40.
    Pokorny, J. (1987) Major Factors Affecting the Autoxidation of Lipids, inAutoxidation of Unsaturated Lipids (Chan, H.W.S., ed.) pp. 141–206, Academic Press, London.Google Scholar
  41. 41.
    Dillard, C.J., Gavino, V.C., and Tappel, A.L. (1983) Relative Antioxidant Effectiveness of α-Tocopherol and γ-Tocopherol in Iron-Loaded Rats,J. Nutr. 113, 2266–2273.PubMedGoogle Scholar
  42. 42.
    VERIS (Vitamin E Research and Information Service) (1993)1993 Vitamin E Abstracts (Horwitt, M.K., ed.) LaGrange, Illinois.Google Scholar
  43. 43.
    Lea, C.H., and Ward, R.J. (1959) Relative Antioxidant Activity of the Seven Tocopherols,J. Sci. Food Agric. 10, 537–548.CrossRefGoogle Scholar
  44. 44.
    Olcott, H.S., and Van Der Ven, J. (1968) Comparison of Antioxidant Activities of Tocol and Its Methyl Derivatives,Lipids 3, 331–334.PubMedGoogle Scholar
  45. 45.
    Parkhurst, R.M., Skinner, W.A., and Strum, P.A. (1968) The Effect of Various Concentrations of Tocopherols and Tocopherol Mixtures on the Oxidative Stabilities of a Sample of Lard,J. Am. Oil Chem. Soc. 45, 641–642.Google Scholar
  46. 46.
    Chow, C.K., and Draper, H.H. (1974) Oxidative Stability and Activity of the Tocopherols in Corn and Soybean Oils,Int. J. Vit. Nutr. Res. 44, 396–403.Google Scholar
  47. 47.
    Koskas, J.P., Cillard, J., and Cillard, P. (1984) Autooxidation of Linoleic Acid and Behavior of Its Hydroperoxides with and without Tocopherols,J. Am. Oil Chem. Soc. 61, 1466–1469.Google Scholar
  48. 48.
    Esterbauer, H., Striegl, G., Puhl, H., Oberreither, S., Rothender, M., El-Saadani, M., and Jurgens, G. (1989) The Role of Vitamin E and Carotenoids in Preventing the Oxidation of Low-Density Lipoproteins,Ann. N. Y. Acad. Sci. 570, 254–267.PubMedGoogle Scholar
  49. 49.
    Gottstein, T., and Grosch, W. (1990) Model Study of Different Antioxidant Properties of α-and γ-Tocopherol in Fats,Fat Sci. Technol. 92, 139–144.Google Scholar
  50. 50.
    Timmermann, von F. (1990) Tocopherole-Antioxidative Wirkung bei Fetten und Ölen,Fat Sci. & Technol. 92, 201–206.Google Scholar
  51. 51.
    Moore, R.N., and Bickford, W.G. (1952) A Comparative Evaluation of Several Antioxidants in Edible Fats,J. Am. Oil Chem. Soc. 29, 1–4.Google Scholar
  52. 52.
    Jung, M.Y., and Min, D.B. (1990) Effects of α-, γ- and δ-Tocopherols on Oxidative Stability of Soybean Oil,J. Food Sci. 55, 1464–1465.CrossRefGoogle Scholar
  53. 53.
    Jung, M.Y., and Min, D.B. (1990) Effects of Oxidized α-, γ-and δ-Tocopherols on the Oxidative Stability of Purified Soybean Oil,Food Chem. 45, 183–187.CrossRefGoogle Scholar
  54. 54.
    Lea, C.H. (1960) On the Antioxidant Activities of the Tocopherols. II. Influence of Substrate, Temperature and Level of Oxidation,J. Sci. Food Agric. 11, 212–218.CrossRefGoogle Scholar
  55. 55.
    Nawar, W.W. (1985) Lipid, inFood Chemistry, 2nd edn. (Fennema, O.R., ed.), pp. 139–244, Marcel Dekker, New York.Google Scholar
  56. 56.
    Lea, C.H. (1960) Antioxidation in Dry Fat Systems. I. Influence of the Fatty Acid Composition of the Substrate,J. Sci. Food Agric. 11, 143–150.CrossRefGoogle Scholar
  57. 57.
    Frankel, E.N. (1989) The Antioxidant and Nutritional Effects of Tocopherols, Ascorbic Acid and β-Carotene in Relation to Processing of Edible Oils, inNutritional Impacts of Food Processing, No. 43 (Somogyi, J.C., and Muller, H.R. eds.), pp. 297–312, Bibliotheca ‘Nutritio et dieta, Basel, Karger.Google Scholar
  58. 58.
    Cillard, J., Cillard, P., Cormier, M., and Girre, L. (1980) α-Tocopherol Prooxidant Effect in Aqueous Media: Increased Autooxidation Rate of Linoleic Acid,J. Am. Oil Chem. Soc. 57, 252–255.Google Scholar
  59. 59.
    Cillard, J., Cillard, P., and Cormier, M. (1980) Effect of Experimental Factors on the Prooxidant Behavior of α-Tocopherol,J. Am. Oil Chem. Soc. 57, 255–261.Google Scholar
  60. 60.
    Tasuta, T. (1971) Relationship Between Chemical Structure and Biological Activity of Vitamin E,Vitamins 44, 185–190.Google Scholar
  61. 61.
    Lehmann, J., and Slover, H.T. (1976) Relative Antioxidative and Photolytic Stabilities of Tocols and Tocotrienols,Lipids 11, 853–857.PubMedGoogle Scholar
  62. 62.
    Nakano, M., Sugioka, K., Nakamura, T., and Oki, T. (1980) Interaction Between an Organic Hydroperoxide and an Unsaturated Phospholipid and α-Tocopherol in Model Membranes,Biochim. Biophys. Acta 619, 274–286.PubMedGoogle Scholar
  63. 63.
    Komiyama, K., Iizuka, K., Yamaoka, M., Watanabe, H., Tsuchiya, N., and Umezawa, I. (1989) Studies on the Biological Activity of Tocotrienol,Chem. Pharm. Bull. 37, 1369–1371.PubMedGoogle Scholar
  64. 64.
    Goh, S.H., Hew, N.F., Ong, A.S.H., Choo, Y.M., and Brumby, S. (1990) Tocotrienols from Palm Oil: Electron Spin Resonance Spectra of Tocotrienoxyl Radicals,J. Am. Oil Chem. Soc. 67, 250–254.Google Scholar
  65. 65.
    Yamaoka, M., and Komiyama, K. (1989) Antioxidative Activities of α-Tocotrienol and Its Derivative in the Oxidation of Dilinoleolylphosphatidylcholine Liposomes,J. Jpn. Oil Chem. Soc. 38, 478.Google Scholar
  66. 66.
    Yamaoka, M., Carrillo, M.J.H., Nakahara, T., and Komiyama, K. (1991) Antioxidative Activities of Tocotrienols on Phospholipid Liposomes,J. Am. Oil Chem. Soc. 68, 114–118.Google Scholar
  67. 67.
    Serbinova, E., Kagan, V., Han, D., and Packer, L. (1991) Free Radical Recycling and Intermembrane Mobility in the Antioxidation Properties of alpha-Tocopherol and alpha-Tocotrienol,Free Radic. Biol. Med. 10, 263–275.PubMedCrossRefGoogle Scholar
  68. 68.
    Suarna, C, Hood, R.L., Dean, R.T., and Stocker, R. (1993) Comparative Antioxidant Activity of Tocotrienols and Other Lipid-Soluble Antioxidants in a Homogeneous System and in Rat and Human Lipoproteins,Biochem. Biophys. Acta 1166, 163–170.PubMedGoogle Scholar
  69. 69.
    Suzuki, Y.J., Tsuchiya, M., Wassall, S.R., Choo, Y.M., Govil, G., Kagan, V.E., and Packer, L. (1993) Structural and Dynamic Membrane Properties of α-Tocopherol and α-Tocotrienol: Implications to the Molecular Mechanism of Their Antioxidant Potency,Biochemistry 32, 10692–10699.PubMedCrossRefGoogle Scholar
  70. 70.
    Evans, H.M., and Bishop, K.S. (1922) On the Existence of a Hitherto Unrecognized Dietary Factor Essential for Reproduction,Science 56, 650–651.CrossRefPubMedGoogle Scholar
  71. 71.
    IUNS (International Union of Nutritional Sciences) Committee on Nomenclature (1978)Nutr. Abst. Rev. 48A, 831–835.Google Scholar
  72. 72.
    IUPAC-IUB Joint Commission on Biochemical Nomenclature (1982) Nomenclature of Tocopherols and Related Compounds: Recommendations 1981,Eur. J. Biochem. 123, 473–475.Google Scholar
  73. 73.
    Nelan, D.R., and Robeson, C.D. (1962) The Oxidation Product from α-Tocopherol and Potassium Ferricyanide and Its Reaction with Ascorbic and Hydrochloric Acids,J. Am. Chem. Soc. 84, 2963–2968.CrossRefGoogle Scholar
  74. 74.
    Frampton, V.L., Skinner, W.A., Cambour, P., and Bailey, P.S. (1969) α-Tocopurple: An Oxidation Product of α-Tocopherol,J. Am. Chem. Soc. 82, 4632–4634.CrossRefGoogle Scholar
  75. 75.
    Hjarde, W., Leerbeck, E., and Leth, T. (1973) The Chemistry of Vitamin E (including its chemical determination),Acta Agric Scand. (Suppl.)19, 87–96.Google Scholar
  76. 76.
    Kasparek, S. (1980) Chemistry of Tocopherols and Tocotrienols, inVitamin E, A Comprehensive Treatise (Machlin, L.J., ed.), pp. 7–65, Marcel Dekker, Inc, New York and Basel.Google Scholar
  77. 77.
    Simic, M.G. (1981) Vitamin E Radicals, inOxygen and Oxyradicals in Chemistry and Biology (Rodgers, M.A.J., and Powers, E.L., eds.) Academic Press, New York, p. 109.Google Scholar
  78. 78.
    Doba, T., Burton, G.W., and Ingold, K.U. (1983) EPR Spectra of Some α-Tocopherol Model Compounds. Polar and Conformational Effects and Their Relation to Antioxidant Activities,J. Am. Chem. Soc. 105, 6505–6506.CrossRefGoogle Scholar
  79. 79.
    Matsuo, M., Matsumoto, S., and Ozawa, T. (1983) Electron Spin Resonance Spectra and Hyperfine Coupling Constants of the Tocopheroxyl and 2,2,5,7,8-Pentamethylchroman-6-Oxyl Radicals Derived from Vitamin E and Its Model and Deuterated Model Compounds,Org. Mag. Res. 21, 261–264.CrossRefGoogle Scholar
  80. 80.
    Burton, G.W., Doba, T., Gabe, E.J., Hughes, L., Lee, F.L., Prasad, L., and Ingold, K.U. (1985) Autooxidation of Biological Molecules. 4. Maximizing the Antioxidant Activity of Phenols,J. Am. Chem. Soc. 107, 7053–7065.CrossRefGoogle Scholar
  81. 81.
    Boguth, W., and Niemann, H. (1971) Electron Spin Resonance of Chromanoxy Free Radicals from Tocopherol and Tocol,Biochim. Biophys. Acta 248, 121–130.PubMedGoogle Scholar
  82. 82.
    Mukai, K., Tsuzuki, N., Ishizu, K, Ouchi, S., and Fukuzawa, K. (1981) Electron Nuclear Double Resonance Studies on Radicals Produced by the Lead (II) Oxide Oxidation of α-Tocopherol and Its Model Compound in Solution,Chem. Phys. Lipids 29, 129–135.CrossRefGoogle Scholar
  83. 83.
    Mukai, K., Tsuzuki, N., Ouchi, S., and Fukuzawa, K. (1982) Electron Spin Resonance Studies of Chromanoxyl Radicals Derived from Tocopherols,Chem. Phys. Lipids 30, 337–345.CrossRefGoogle Scholar
  84. 84.
    Matsuo, M., and Matsumoto, S. (1983) Electron Spin Resonance Spectra of the Chromanoxyl Radicals Derived from Tocopherols (vitamin E) and Their Related Compounds,Lipids 18, 81–86.Google Scholar
  85. 85.
    Tsuchiya, J., Niki, E., and Kamiya, Y. (1983) Oxidation of Lipids. IV. Formation and Reaction of Chromanoxyl Radicals as Studies by Electron Spin Resonance,Bull. Chem. Soc. Jpn 56, 229–231.CrossRefGoogle Scholar
  86. 86.
    Kagan, V.E., Sebinova, E.A., and Packer, L. (1990) Recylcing and Antioxidant Activity of Tocopherol Homologs of Differing Hydrocarbon Chain Lengths in Liver Microsomes,Arch. Biochem. Biophys. 282, 221–225.PubMedCrossRefGoogle Scholar
  87. 87.
    Sumarno, M., Atkinson, E., Suarna, C., Saunders, J.K., Cole, E.R., and Southwell-Keely, P. T. (1987) Solvent Influence on Model Oxidations of α-Tocopherol,Biochim. Biophys. Acta 920, 247–250.PubMedGoogle Scholar
  88. 88.
    Suarna, C., and Southwell-Keely, P.T. (1988) New Oxidation Products of α-Tocopherol,Lipids 23, 137–139.Google Scholar
  89. 89.
    Suarna, C., and Southwell-Keely, P.T. (1989) Effect of Alcohols on the Oxidation of Vitamin E Model Compound 2,2,5,7,8-Pentamethyl-6-Chromanol,Lipids 24, 56–60.PubMedGoogle Scholar
  90. 90.
    Suarna, C., Sumarno, D. N., and Southwell-Keely, P.T. (1988) New Oxidation Products of 2,2,5,7,8-Pentamethyl-6-Chromanol,Lipids 23, 1129–1131.Google Scholar
  91. 91.
    Suarna, C., Baca, M., and Southwell-Keely, P.T. (1992) Oxidation of the α-Tocopherol Model Compound 2,2,5,7,8-Pentamethyl-6-Chromanol in the Presence of Alcohols,Lipids 27, 447–453.Google Scholar
  92. 92.
    Suarna, C., Craig, D.C., Cross, K.G., and Southwell-Keely, P.T. (1988) Oxidation of Vitamin E (α-tocopherol) and Its Model Compound 2,2,5,7,8-Pentamethyl-6-Hydroxychroman: A New Dimer,J. Org. Chem. 53, 1281–1284.CrossRefGoogle Scholar
  93. 93.
    Suarna, C., and Southwell-Keely, P.T. (1991) Antioxidant Activity of Oxidation Products of α-Tocopherol and of Its Model Compound 2,2,5,7,8-Pentamethyl-6-Chromanol,Lipids 26, 187–190.Google Scholar
  94. 94.
    Nillson, J.L.G., Doyle Daves, G., and Folkers, K. (1968) New Tocopherol Dimers,Acta Chem. Scand. 22, 200–206.Google Scholar
  95. 95.
    Nillson, J.L.G., Doyle Daves, G., and Folkers, K. (1968) The Oxidative Dimerization of α-, β-, ψ-, and Δ-Tocopherols,Acta Chem. Scand. 22, 207–218.Google Scholar
  96. 96.
    Gross, A.J., and Sizer, I.W. (1959) The Oxidation of Tyramine, Tyrosine and Related Compounds by Peroxidase,J. Biol. Chem. 234, 1611–1614.PubMedGoogle Scholar
  97. 97.
    Nakamura, T., and Kijima, S. (1972) Studies on Tocopherol Derivatives. III. Oxidation of Δ-Tocopherol and 6-Hydroxy-2,2,8-Trimethylchroman,Chem. Pharm. Bull. 20, 1297–1304.Google Scholar
  98. 98.
    Lambelet, P., and Löliger, J. (1984) The Fate of Antioxidant Radicals During Lipid Autoxidation. 1. The Tocopheroxyl Radical,Chem. Phys. Lipids 35, 185–198.PubMedCrossRefGoogle Scholar
  99. 99.
    Denisov, E.T., and Khudyakov, I.V. (1987) Mechanisms of Action and Reactivities of the Free Radicals of Inhibitors,Chem. Revs. 87, 1313–1357.CrossRefGoogle Scholar
  100. 100.
    Rousseau-Richard, C., Richard, C., and Martin, R. (1988) Kinetics of Bimolecular Decay of α-Tocopheroxyl Free Radicals Studied by ESR,FEBS Lett. 233, 307–310.PubMedCrossRefGoogle Scholar
  101. 101.
    Skinner, W.A., and Parkhurst, R.M. (1966) Oxidation Products of Vitamin E and Its Model, 6-Hydroxyl-2,2,5,7,8-Pentamethylchroman. VIII. Oxidation with Benzoyl Peroxide,J. Org. Chem. 31, 1248–1251.PubMedGoogle Scholar
  102. 102.
    Draper, H.H., Csallany, A.S., and Chiu,M. (1976) Isolation of a Trimer of α-Tocopherol from Mammalian Liver,Lipids 2, 47–54.Google Scholar
  103. 103.
    Yamauchi, R, Kato, K., and Ueno, K. (1988) Formation of Trimers of α-Tocopherol and Its Model Compound, 2,2,5,7,8-Pentamethylchroman-6-ol in Autoxidizing Methyl Linoleate,Lipids 23, 779–783.PubMedGoogle Scholar
  104. 104.
    Yamauchi, R, Matsui, T., Kato, K., and Ueno, K. (1989) Reaction Products of α-Tocopherol with a Free Radical Initiator, 2,2′-Azobis(2,4-dimethylvaleronitrile),Lipids 24, 204–209.PubMedGoogle Scholar
  105. 105.
    Yamauchi, R, Matsui, T., Kato, K, and Ueno, K. (1989) Reaction of α-Tocopherol with 2,2′-Azobis(2,4-dimethyl-valeronitrile) in Benzene,Agric. Biol. Chem. 53, 3257–3262.Google Scholar
  106. 106.
    Igarashi, O., Hagino, M., and Inagaki, C. (1973) Decomposition of α-Tocopheryl Spirodimer by Alkaline Saponification,J. Nutr. Sci. Vitaminol. 19, 469–474.PubMedGoogle Scholar
  107. 107.
    Matsuo, M., Matsumoto, S., Iitaka, Y., and Niki, E. (1989) Radical Scavenging Reactions of Vitamin E and Its Model Compound, 2,2,5,7,8-Pentamethylchroman-6-ol, in aterl-Butylperoxy Radical Generating System,J. Am. Chem. Soc. 111, 7179–7185.CrossRefGoogle Scholar
  108. 108.
    Liebler, D.C., Baker, P.F., and Kaysen, K.L. (1990) Oxidation of Vitamin E: Evidence for Competing Autoxidation and Peroxy Radical Trapping Reactions of the Tocopheroxyl Radical,J. Am. Chem. Soc. 112, 6995–7000.CrossRefGoogle Scholar
  109. 109.
    Winterle, J.S., Dulin, D., and Mill, T. (1984) Products and Stoichiometry of Reaction of Vitamin E with Alkyl Peroxy Radicals,J. Org. Chem. 49, 491–495.CrossRefGoogle Scholar
  110. 110.
    Csallany, A.S., Draper, H.H., and Shah, S.N. (1962). Conversion of α-Tocopherol-C14 to Tocopheryl-p-Quinonein vivo, Arch. Biochem. Biophys 98, 142–145.PubMedCrossRefGoogle Scholar
  111. 111.
    Komoda, M., and Harada, I. (1969). A Dimeric Oxidation Product of γ-Tocopherol in Soybean Oil,J. Am. Chem. Soc. 46, 18–22.Google Scholar
  112. 112.
    Yamauchi, R., Matsui, T., Kato, K., and Ueno, K. (1990) Reaction Products of γ-Tocopherol with an Alkyl Peroxy Radical in Benzene,Agric. Biol. Chem. 54, 2703–2709.Google Scholar
  113. 113.
    McHale, D., and Green, J. (1963). A Dimeric Oxidation Product of γ-Tocopherol,Chem. & Ind. (London), 982–983.Google Scholar
  114. 114.
    Ishikawa, Y. (1974) Yellow Reaction Products from Tocopherol and Trimethylamine Oxide,Agric. Biol. Chem. 38, 2545–2547.Google Scholar
  115. 115.
    Ishikawa, Y., and Yuki, E. (1975) Reaction Products from Various Tocopherols with Trimethylamine Oxide and Their Antioxidative Activities,Agric. Biol. Chem. 39, 851–857.Google Scholar
  116. 116.
    Fujitani, T., and Ando, H. (1981) Oxidation Dimerization of Tocopherols During the Course of Autoxidation of Methyl Esters of Saturated and Unsaturated Fatty Acids. I. Oxidative Dimerization of γ-Tocopherol Under A.O.M. Condition,J. Japan Oil Chem. Soc. 30, 145–150.Google Scholar
  117. 117.
    Fujitani, T., and Ando, H. (1984) Oxidation Dimerization of Tocopherols During the Course of Autoxidation of Methyl Esters of Saturated and Unsaturated Fatty Acids. II. Oxidative Dimerization of α- and Δ-Tocopherols Under A.O.M. Conditions,J. Japan. Oil Chem. Soc. 33, 356–360.Google Scholar
  118. 118.
    Kwi-Hyun, H., and Igarashi, O. (1990) The Oxidation Products from Two Kinds of Tocopherols Co-Existing in Autoxidation System of Methyl Linoleate,J. Nutr. Sci. Vitaminol 36, 411–421.Google Scholar
  119. 119.
    Yamauchi, R., Miyake, N., Kato, K., and Ueno, K. (1993) Reaction of α-Tocopherol with Alkyl and Alkyl Peroxy Radicals of Methyl Linoleate,Lipids 28, 201–206.PubMedGoogle Scholar
  120. 120.
    Wasson, J.J., and Smith, W.M. (1953) Effect of Alkyl Substitution on Antioxidant Properties of Phenols,Ind. & Ing. Chem. 45, 197.CrossRefGoogle Scholar
  121. 121.
    Cort, W.M. (1974) Hemoglobin Peroxidation Test Screens Antioxidants,Food Technol. 10, 60–66.Google Scholar
  122. 122.
    Wacks, W. (1949) Elektrometrische Redoxmessungen an Natürlichen Fett-Antioxydantien,Biochem. Z. 319, 561–570.Google Scholar
  123. 123.
    Niki, E., Tsuchiya, J., Yoshikawa, Y., Yamamoto, Y., and Kamiya, Y. (1986) Antioxidant Activities of α-, β-, ψ- and Δ-Tocopherols,Bull. Chem. Soc. Jpn 59, 497–501.CrossRefGoogle Scholar
  124. 124.
    Burton, G.W., LaPage, Y., Fabe, E.J., and Ingold, K.U. (1980) Antioxidant Activity of Vitamin E and Related Phenols: Importance of Stereoelectronic Factors,J. Am. Chem. Soc. 102, 7791–7792.CrossRefGoogle Scholar
  125. 125.
    Mukai, K., Uemoto, Y., Fukuhara, M., Nagaoka, S., and Ishizu, K. (1992) ENDOR Study of the Cation Radicals of Vitamin E Derivatives: Relation Between Antioxidant Activity and Molecular Structure,Bull. Chem. Soc. Jpn. 65, 2016–2020.CrossRefGoogle Scholar
  126. 126.
    Nagaoka, S., Sawada, K., Fukumoto, Y., Nagashima, U., Katasumata, S., and Mukai, K. (1992) Mechanism of Antioxidant Reaction of Vitamin E: Kinetic, Spectroscopic andab initio Study of Proton-Transfer Reactions,J. Phys. Chem. 96, 6663–6668.CrossRefGoogle Scholar
  127. 127.
    Nagaoka, S., Mukai, K., Itoh, T., and Katsumata, S. (1992) Mechanism of Antioxidant Reaction of Vitamin E: Photoelectron Spectroscopy andab initio Calculation,J. Phys. Chem. 96, 8184–8187.CrossRefGoogle Scholar
  128. 128.
    Nagaoka, S., Kuranaka, A., Tsuboi, H., Nagashima, U., and Mukai, K. (1992) Mechanism of Antioxidant Reaction of Vitamin E: Charge Transfer and Tunneling Effect in Proton-Transfer Reactions,J. Phys. Chem. 86, 2754–2761.CrossRefGoogle Scholar
  129. 129.
    Sliwiok, von J., and Kocjan, B (1992) Chromatographische Untersuchungen der Hydrophoben Eigenschaften von Tocopherolen,Fat Sci. Technol. 94, 157–159.Google Scholar
  130. 130.
    Ingold, K.U., and Howard, J.A. (1962) Reactions of Phenols with Peroxy Radicals,Nature 195, 280–281.CrossRefGoogle Scholar
  131. 131.
    Howard, J.A., and Ingold, K.U. (1962) The Inhibited Autoxidation of Styrene. III. The Relative Inhibiting Effeciencies ofmeta- andpara-Substituted Phenols,Can. J. Chem. 41, 1744–1751.CrossRefGoogle Scholar
  132. 132.
    Howard, J.A., and Ingold, K.U. (1963) The Inhibited Autoxidation of Styrene. III. The Relative Inhibiting Efficiencies oforth-Alkyl Phenols,Can. J. Chem. 41, 2800–2806.CrossRefGoogle Scholar
  133. 133.
    Massey, J.B. (1984) Kinetics of Transfer of α-Tocopherol Between Model and Native Plasma Lipoproteins,Biochim. Biophys. Acta 793, 387–392.PubMedGoogle Scholar
  134. 134.
    Ingold, K.U., Burton, G.W., Foster, D.O., Zuker, M., Hughes, L., Lacelle, S., Lusztyk, E., and Slaby, M. (1986) A New Vitamin E Analogue More Active Than α-Tocopherol in the Rat Curative Myopathy Bioassay,FEBS Lett. 205, 117–120.PubMedCrossRefGoogle Scholar
  135. 135.
    Ingold, K.U., Webb, A., Witter, D., Burton, G.W., Metacalfe, T.A., and Muller, D.P. (1987) Vitamin E Remains the Major Lipid-Soluble, Chain-Breaking Antioxidant in Human Plasma Even in Individuals Suffering Severe Vitamin E Deficiency,Arch. Biochem. Biophys. 259, 224–225.PubMedCrossRefGoogle Scholar
  136. 136.
    Ingold, K.U., Burton, G.W., Foster, D.O., and Hughes, L. (1990) Further Studies of a New Vitamin E Analogue More Active Than α-Tocopherol in the Rat Curative Myopathy Bioassay,FEBS Lett. 267, 63–67.PubMedCrossRefGoogle Scholar
  137. 137.
    Ingold, K.U., Burton, G.W., Foster, D.O., and Hughes, L. (1990) Is Methyl-Branching in α-Tocopherol's “Tail” Important for Itsin vivo Activity? Rat Curative Bioassay Measurements of the Vitamin E Activity of three 2RS-n-alkyl-2,5,7,8-Tetramethyl-6-Hydroxychromans,Free Radic. Biol. Med. 9, 205–210.PubMedCrossRefGoogle Scholar
  138. 138.
    Burton, G.W., Hughes, L., and Ingold, K.U. (1983) Antioxidant Activity of Phenols Related to Vitamin E: Are There Chain-Breaking Antioxidants Better Than α-Tocopherol?,J. Am. Chem. Soc. 105, 5950–5951.CrossRefGoogle Scholar
  139. 139.
    Hughes, L., Burton, G.W., Ingold, K.U., Slaby, M., and Foster, D.O. (1992) Custom Design of Betterin vivo Antioxidants Structurally Related to Vitamin E, inPhenolic Compounds in Food and Their Effects on Health, vol. 2: Antioxidants and Cancer Prevention, Chapter 14 (Ho, C.-T., Lee, C.Y., and Huang, M.-T., eds.) pp. 350–366, ACS Series 507, Washington D.C.Google Scholar
  140. 140.
    Ames, S.R. (1971) Isomers of α-Tocopheryl Acetate and Their Bioligical Activity,Lipids 6, 281–290.Google Scholar
  141. 141.
    Ames, S.R. (1979) Biopotencies in Rat of Several Forms of α-Tocopherol,J. Nutr. 109, 2198–2204.PubMedGoogle Scholar
  142. 142.
    Weiser, H, and Vecchi, M. (1981) Stereoisomers of α-Tocopheryl Acetate: Characterization of the Samples by Physicochemical Methods and Determination of Biological Activities in the Rat Resorption Gestation Test,Int. J. Vit. Nutr. Res. 51, 100–113.Google Scholar
  143. 143.
    Weiser, H, and Vecchi, M. (1982) Stereoisomers of α-Tocopheryl Acetates. II. Biopotencies of Eight Stereoisomers, Individually or in Mixtures as Determined by Rat Resorption-Gestation Tests,Int. J. Vit. Nutr. Res. 52, 351–370.Google Scholar
  144. 144.
    Machlin, L.J., Gabriel, E., and Brin, M. (1982) Biopotency of α-Tocopherol as Determined by Curative Myopathy Bioassay in the Rat,J. Nutr. 112, 1437–1440.PubMedGoogle Scholar
  145. 145.
    Ingold, K.U., Burton, G.W., Foster, D.O., Hughes, L., Lindsay, D.A., and Webb, A. (1987) Biokinetics and Discrimination Between DietaryRRR- andSRR-α-Tocopherol in the Male Rat,Lipids 22, 163–172.PubMedGoogle Scholar
  146. 146.
    Niki, E., Tsuchiya, J., Kawakimi, A., Saito, M., Yamamoto, Y., and Kamiya, Y. (1985) Effects of Phytyl Side Chain of Vitamin E on Its Antioxidant Activity,J. Biol. Chem. 260, 2191–2196.PubMedGoogle Scholar
  147. 147.
    Diplock, A.T., and Lucy, J. (1973) The Biochemical Modes of Action of Vitamin E and Selenium: A Hypothesis,FEBS Lett. 29, 205–210.PubMedCrossRefGoogle Scholar
  148. 148.
    Perly, B., Smith, L.C.P., Hughes, L.H., Burton, G.W., and Ingold, K.U. (1985) Estimation of the Location of Natural α-Tocopherol in Lipid Bilayers,Biochim. Biophys. Acta 819, 131–135.PubMedCrossRefGoogle Scholar
  149. 149.
    Wefers, H., and Sies, H. (1988) The Protection by Ascorbate and Glutathione Against Microsomal Lipid Peroxidation Is Dependent on Vitamin E,Eur. J. Biochem. 174, 353–357.PubMedCrossRefGoogle Scholar
  150. 150.
    Wefers, H., and Sies, H. (1988) Antioxidant Defense: Vitamins E and C and Beta-Carotene, inOxy-Radicals in Molecular Biology and Pathology (Cerutti, P.A., Fridovich, I., and McCord, J.M., eds.) pp. 481–490, Alan R. Liss, Inc., New York.Google Scholar
  151. 151.
    Diplock, A.T. (1985) Vitamin E, inFat-Soluble Vitamins (Diplock, A.T., ed.) pp. 154–224, Technomic Publisher, Lancaster.Google Scholar
  152. 152.
    Bunyan, J., McHale, D., Green, J., and Marcinkiewicz, S. (1961) Biological Potencies of ε and ζ1-Tocopherol and 5-Methyltocol,Br. J. Nutr. 15, 253–257.PubMedCrossRefGoogle Scholar
  153. 153.
    Traber, M.G., Burton, G.W., Hughes, L., Ingold, K.U., Hidaka, H., Malloy, M., Kane, J., Hyams, J., and Kayden, H.J. (1992) Discrimination Between Forms of Vitamin E by Humans with and without Genetic Abnormalities of Lipoprotein Metabolism,J. Lipid Res. 33, 1171–1182.PubMedGoogle Scholar
  154. 154.
    Kayden, H.J., and Traber, M.G. (1993) Absorption, Lipoprotein Transport and Regulation of Plasma Concentrations of Vitamin E in Humans,J. Lipid Res. 34, 343–358.PubMedGoogle Scholar
  155. 155.
    Clément, M., Dinh, L., and Bourre, J.-M. (1995) Uptake of DietaryRRR-α- andRRR-γ-Tocopherol by Nervous Tissues, Liver and Muscle in Vitamin E-Deficient Rats,Biochim. Biophys. Acta 1256, 175–180.PubMedGoogle Scholar
  156. 156.
    Traber, M.G., Burton, G.W., Ingold, K.U., and Kayden, H.J. (1990)RRR- andSRR-Tocopherols Are Secreted Without Discrimination in Human Chylomicrons, ButRRR-α-Tocopherol Is Preferentially Secreted in Very Low Density Lipiproteins,J. Lipid Res. 31, 675–685.PubMedGoogle Scholar
  157. 157.
    Kiyose, C., Hayashi, K., Ueda, T., and Igarashi, O (1994) Distribution of α-Tocopherol Stereoisomers in Rats,Biosci. Biotech. Biochem. 58, 2000–2003.Google Scholar
  158. 158.
    Kiyose, C., Muramatsu, R., Ueda, T, and Igarashi, O. (1995) Change in Distribution of α-Tocopherol Stereoisomers in Rats After Intravenous Administration,Biosci. Biotech. Biochem. 59, 791–795.CrossRefGoogle Scholar
  159. 159.
    Kiyose, C., Muramatsu, R., Fujiama-Fujiwara, Y., Ueda, T., and Igarashi, O. (1995) Biodiscrimination of α-Tocopherol Stereoisomers During Intestinal Absorption,Lipids 30, 1015–1018.PubMedGoogle Scholar
  160. 160.
    Catignani, G.L., and Bieri, J.G. (1975) Rat Liver α-Tocopherol Binding Protein,Biochem. Biophys. Acta 497, 349–357.Google Scholar
  161. 161.
    Kaplowitz, N., Yoshida, H., Kuhlenkamp, J., Slitsky, B., Ren, I., and Stolz, A. (1989) Tocopherol-Binding Protein of Hepatic Cytosol,Ann. N.Y. Acad. Sci. 570, 85–94.PubMedGoogle Scholar
  162. 162.
    Sato, Y., Hagiwara, K., Arai, H., and Inoue, K. (1991) Purification and Characterization of the α-Tocopherol Transfer Protein from Rat Liver,FEBS Lett. 288, 41–45.PubMedCrossRefGoogle Scholar
  163. 163.
    Yoshida, H., Yusin, M., Ren, I., Kuklenkamp, J., Hirano, T., Stolz, A., and Kaplowitz, N. (1992) Identification, Purification and Immunochemical Characterization of a Tocopherol-Binding Protein in Rat Liver Cytosol,J. Lipid Res. 33, 343–350.PubMedGoogle Scholar
  164. 164.
    Gotoda, T., Arita, M., Arai, H., Inoue, K., Yokota, T., Fukuo, Y., Yazaki, Y., and Yamada, N. (1995) Adult-Onset Spinocerebellar Dysfunction Caused by Mutation in the Gene for the α-Tocopherol-Transfer Protein,N. Eng. J. Med. 333, 1313–1318.CrossRefGoogle Scholar
  165. 165.
    Leth, T., and Sondergaad, H. (1977) Biological Activity of Vitamin E Compounds and Natural Materials by the Resorption-Gestation Test and Chemical Determination of Vitamin E Activity in Foods and Feeds,J. Nutr. 107, 2236–2243.PubMedGoogle Scholar
  166. 166.
    Cadenas, E. (1989) Biochemistry of Oxygen Toxicity, A Review,Biochemistry 58, 79–110.Google Scholar
  167. 167.
    Hennig, B., and Chow, C.K. (1988) Lipid Peroxidation and Endothelial Cell Injury: Implications in Athersclerosis,Free Radic. Biol. Med. 4, 99–106.PubMedCrossRefGoogle Scholar
  168. 168.
    Packer, J.E., Mahood, J.S., Mora-Arellano, V.O., Slater, T.F., Wilson, R.L., and Wolfenden, B.S. (1981) Free Radicals and Singlet Oxygen-Scavengers: Reactions of a Peroxy Radical with β-Carotene, Diphenyl Furan and 1,4-Diazobicyclo-(2,2,2)-Octane,Biochem. Biophys. Res. Commun. 98, 901–906.PubMedCrossRefGoogle Scholar
  169. 169.
    Maillard, B., Ingold, K.U., and Scaniano, J.C. (1983) Rate Constants for the Reactions of Free Radicals with Oxygen in Solution,J. Am. Chem. Soc. 105, 5095–5099.CrossRefGoogle Scholar
  170. 170.
    Ingold, K.U. (1961) Inhibition of the Autoxidation of Organic Substances in the Liquid Phase,Chem. Rev. 61, 563–589.CrossRefGoogle Scholar
  171. 171.
    Schaich, K.M. (1992) Metals and Lipid Peroxidation: Contemporary Issues,Lipids 27, 209–218.PubMedGoogle Scholar
  172. 172.
    Campbell, T.W., and Coppinger, G.M. (1952) The Reaction oftert-Butyl Hydroperoxide with Some Phenols,J. Am. Chem. Soc. 74, 1467–1469.Google Scholar
  173. 173.
    Gardner, H.W., Eskins, K., Grams, G.W., and Inglett, G.E. (1972) Radical Addition of Linoleic Hydroperoxides to α-Tocopherol or the Analogous Hydroxychroman,Lipids 7, 324–334.Google Scholar
  174. 174.
    Yamauchi, R., Kato, K., and Ueno, Y. (1995) Free Radical Scavenging Reactions of α-Tocopherol During the Autoxidation of Methyl Linoleate in Bulk Phase,J. Agric. Food. Chem. 43, 1455–1461.CrossRefGoogle Scholar
  175. 175.
    Yamauchi, R., Yamamoto, N., and Koji, K. (1995) Iron-Catalyzed Reaction Products of α-Tocopherol with Methyl-13(S)-Hydroperoxy-9(Z),11(E)-Octadecadienoate,Lipids 30, 395–404.PubMedGoogle Scholar
  176. 176.
    Liebler, D.C., and Burr, J.A. (1995) Antioxidant Stoichiometry and the Oxidative Fate of Vitamin E in Peroxy Radical Scavening Reactions,Lipids 30, 789–793.PubMedGoogle Scholar
  177. 177.
    Winterle, J.S., and Mill, T. (1981) Reactions of Vitamin E with Alkyl Peroxy Radicals in Homoggeneous Solution and Liposome, inOxygen and Oxy-Radicals in Chemistry and Biology (Rodgers, M.A.J., and Powers, E.L., eds.) pp. 779–780, Academic Press, New York.Google Scholar
  178. 178.
    Pryor, W.A., Cornicelli, J.A., Devall, L.J., Tait, D., Trevedi, B.K., Witiak, D.T., and Wu, M. (1993) A Rapid Screening Test to Determine the Antioxidant Potencies of Natural and Synthetic Antioxidants,J. Org. Chem. 58, 3521–3532.CrossRefGoogle Scholar
  179. 179.
    Kharitonova, A.A., Kozlova, Z.G., Tsepalov, V.F., and Gladyshev, G. (1979) Kinetic Analysis of the Properties of Antioxidants in Complex Compositions Using a Model Chain-Reaction,Kinet. Katal. 20, 593–599.Google Scholar
  180. 180.
    Packer, J.E., Slater, T.F., and Willison, R.L. (1979) Direct Observation of a Free Radical Interaction Between Vitamin E and Vitamin C,Nature 278, 737–738.PubMedCrossRefGoogle Scholar
  181. 181.
    Patterson, L.K. (1981) Studies of Radiation-Induced Peroxidation in Fatty Acid Micelles, inOxygen and Oxy-Radicals in Chemistry and Biology (Rodgers, M.A.J., and Powers, E.L., eds.) pp. 89–95, Academic Press, New York.Google Scholar
  182. 182.
    Chance, B., Sies, H., and Boveris, A. (1979) Hydroperoxide Metabolism in Mamalian Organs,Physiol. Rev. 59, 527–605.PubMedGoogle Scholar
  183. 183.
    Fukuzawa, K., and Gebicki, J.M. (1983) Oxidation of α-Tocopherol in Micelles and Liposomes by the Hydroxyl, Perhydroxyl and Superoxide Free Radicals,Arch. Biochem. Biophys. 226, 242–251.PubMedCrossRefGoogle Scholar
  184. 184.
    Csallany, A.S., and Ha, Y.L. (1992) α-Tocopherol Oxidation Mediated by Superoxide Anion (O2. I. Reactions in Aprotic and Protic Conditions,Lipids 27, 195–200.PubMedGoogle Scholar
  185. 185.
    Ha, Y.L., and Csallany, A.S. (1992) α-Tocopherol Oxidation Mediated by Superoxide Anion (O2). II. Identification of the Stable α-Tocopherol Oxidation Products,Lipids 27, 201–205.PubMedGoogle Scholar
  186. 186.
    Nishikimi, M., Yamada, H., and Yagi, K. (1980) Oxidation by Superoxide of Tocopherols Dispersed in Aqueous Media with Deoxycholate,Biochim. Biophys. Acta 627, 101–108.PubMedGoogle Scholar
  187. 187.
    Durckheimer, W., and Cohen, L.A. (1964) The Chemistry of 9-Hydroxy-α-Tocopherone: A Quinone Hemiacetal,J. Am. Chem. Soc. 86, 4388–4393.CrossRefGoogle Scholar
  188. 188.
    Grams, G.W., and Eskins, K. (1972) Dye-Sensitized Photoxidation of Tocopherols: Correlation Between Singlet Oxygen Reactivity and Vitamin E Activity,Biochemistry 11, 606–608.PubMedCrossRefGoogle Scholar
  189. 189.
    Fahrenholtz, S.R., Doleiden, F.H., Trozzolo, A.M., and Lamola, A.A. (1974) On the Quenching of Singlet Oxygen by α-Tocopherol,Photochem. Photobiol. 20, 505–509.PubMedGoogle Scholar
  190. 190.
    Foote, C.S., Ching, T.Y., and Geller, G.G. (1974) Chemistry of Singlet Oxygen. VIII. Rates of Reaction and Quenching of α-Tocopherol and Singlet Oxygen,Photochem. Photobiol. 20, 511–513.PubMedGoogle Scholar
  191. 191.
    Foote, C.S. (1979) Quenching of Singlet Oxygen, inSinglet Oxygen (Wasserman, H.H., and Murray, R.W., eds.) pp. 139–171, Academic Press, New York.Google Scholar
  192. 192.
    Stevens, B., Small, R.D., and Perez, S.R. (1974) The Photoperoxidation of Unsaturated Organic Molecules. XIII. O2 1Δg Quenching by α-Tocopherol,Photochem. Photobiol. 20, 515–517.PubMedGoogle Scholar
  193. 193.
    Yamauchi, R., and Matsushita, S. (1977) Quenching Effect of Tocopherols on the Methyl Linoleate Photooxidation and Their Oxidation Products,Agric. Biol. Chem. 41, 1425–1430.Google Scholar
  194. 194.
    Yamauchi, R., and Matsushita, S. (1979) Products Formed by Photosensitized Oxidation of Tocopherols,Agric. Biol. Chem. 43, 2151–2156.Google Scholar
  195. 195.
    Clough, R.L., and Yee, B.G. (1978) Photoxidation of Tocopherols, inTocopherol, Oxygen and Biomembranes (deDuve, C., and Hayaishi, O., eds.) Elsevier, Amesterdam.Google Scholar
  196. 196.
    Clough, R.L., Yee, B.G., and Foote, C.S. (1979) Chemistry of Singlet Oxygen. XXX. The Unstable Primary products of Tocopherol Photoxidation,J. Am. Chem. Soc. 101, 683–686.CrossRefGoogle Scholar
  197. 197.
    Gorman, A.A., Gould, I.R., Hamblett, I., and Standen, M.C. (1984) Reversible Exciplex Formation Between Singlet Oxygen (1Δg) and Vitamin E: Solvent and Temperature Effects,J. Am. Chem. Soc. 106, 6956–6959.CrossRefGoogle Scholar
  198. 198.
    Neely, W.C., Martin, J.M., and Barker, S.A. (1988) Products and Relative Reaction Rates of the Oxidation of Tocopherols with Singlet Molecular Oxygen,Photochem. Photobiol. 48, 423–428.PubMedGoogle Scholar
  199. 199.
    Kaiser, S., DiMascio, P., Murphy, M.E., and Sies, H. (1990) Physical and Chemical Scavening of Singlet Molecular Oxygen by the Tocopherols,Arch. Biochem. Biophys. 277, 101–108.PubMedCrossRefGoogle Scholar
  200. 200.
    Kough, K., and Min, D.B. (1993) Reaction Rates of α-, γ- and δ-Tocopherols with Singlet Oxygen,INFORM 4, 528.Google Scholar
  201. 201.
    Jung, M.Y., Lee, E., and Min, D.B. (1991) α-, γ- and δ-Tocopherols Effects on Chlorophyll Photosensitized Oxidation of Soybean Oil,J. Food Sci. 56, 807–810.CrossRefGoogle Scholar
  202. 202.
    D'Ischia, M., Costantini, C., and Aprota, G. (1991) Dye-Sensetized Photoxidation of Vitamin E Revisitized: New 7-Oxaspiro[4.5]-dec-1-ene-3,6-Dione Products by Oxygenation and Ring Contraction of α-Tocopherol,J. Am. Chem. Soc. 113, 8353–8356.CrossRefGoogle Scholar
  203. 203.
    Thomas, M., and Foote, C.S. (1974) Chemistry of Oxygen. XXVI. Photooxygenation of Phenols,Photochem. Photobiol. 27, 683–693.Google Scholar
  204. 204.
    Foote, C.S. (1976) Photosensitized Oxidations and Singlet Oxygen: Consequences in Biological Systems, inFree Radicals in Biology—Vol. 2 (Pryor, W.A., ed.) pp. 85, Academic Press, New York.Google Scholar
  205. 205.
    Fragata, M., and Bellemare, F. (1980) Model of Singlet Oxygen Scavenging by α-Tocopherol in Biomembranes,Chem. Phys. Lipids 27, 93–99.CrossRefGoogle Scholar
  206. 206.
    Krinsky, N.I. (1992) Mechanism of Action of Biological Antioxidants,Proc. Soc. Expt. Biol. Med. 200, 248–254.Google Scholar
  207. 207.
    Di Mascio, P., Kaiser, S., and Sies, H. (1989) Lycopene as the Most Efficient Biological Carotenoid Singlet Oxygen Quencer,Arch. Biochem. Biophys. 274, 532–538.PubMedCrossRefGoogle Scholar
  208. 208.
    Zweig, A., and Hunderson, Jr., W.A. (1975) Singlet Oxygen and Polymer Photoxidation. I. Sensitizers, Quenchers and Reactants,J. Polymer Sci. Polym. Chem. Ed. Pt. A, 1, 717–736.CrossRefGoogle Scholar
  209. 209.
    Grams, G.W. (1971) Oxidation of α-Tocopherol by Singlet Oxygen,Tetrahedron Lett. 4823–4825.Google Scholar
  210. 210.
    Grams, G.W., Eskins, K., and Inglett, G.E. (1972) Dye-Sensitized Photo-Oxidation of α-Tocopherol,J. Am. Chem. Soc. 94, 866–868.PubMedCrossRefGoogle Scholar
  211. 211.
    Terao, J., and Matsushita, S. (1980) The Isomeric Composition of Monohydroperoxides Produced by Oxidation of Unsaturated Fatty Acid Esters with Singlet Oxygen,J. Food Process Preserv. 3, 329–337.Google Scholar
  212. 212.
    Carlson, D.J., Suprunchuk, T., and Willes, D.M. (1976) Photoxidation of Unsaturated Oils: Effect of Singlet Oxygen Quenchers,J. Am. Oil. Chem. Soc. 53, 656–660.Google Scholar
  213. 213.
    Mukai, K., and Okauchi, Y. (1989) Kinetic Study of the Reaction Between Tocopheroxyl Radical and Unsaturated Fatty Acid Esters in Benzene,Lipids 24, 936–939.Google Scholar
  214. 214.
    Mukai, K., Kohno, Y., and Ishizu, K. (1988) Kinetic Study of the Reaction Between Vitamin E Radical and Alkyl Hydroperoxides in Solution,Biochem. Biophys. Res. Commun. 155, 1046–1050.PubMedCrossRefGoogle Scholar
  215. 215.
    Mukai, K., Morimoto, H., Okauchi, Y., and Nagaoka, S. (1993) Kinetic Study of Reactions Between Tocopheroxyl Radicals and Fatty Acids,Lipids 28, 753–756.Google Scholar
  216. 216.
    Mukai, K., Sawada, K., Kohno, Y., and Terao, J. (1993) Kinetic Study of the Prooxidant Effect of Tocopherol. Hydrogen Abstraction from Lipid Hydroperoxides by Tocopheroxyls in Solution,Lipids 28, 747–752.Google Scholar
  217. 217.
    Bowry, V.W., Ingold, K.U., and Stocker, R. (1992) Vitamin E in Human Low-Density Lipoprotein,Biochem. J. 288, 341–344.PubMedGoogle Scholar
  218. 218.
    Bowry, V.W., and Stocker, R. (1993) Tocopherol-Mediated Peroxidation: The Prooxidant Effect of Vitamin E on the Radical-Initiated Oxidation of Human Low-Density Lipoprotein,J. Am. Chem. Soc. 115, 6029–6044.CrossRefGoogle Scholar
  219. 219.
    Ingold, K.U., Bowry, V.W., Stocker, R., and Walling, C. (1993) Autoxidation of Lipids and Antioxidation by α-Tocopherol and Ubiquinol in Homogeneous Solution and in Aqueous Dispersions of Lipids: Unrecognized Consequences of Lipid Particle Size as Examined by Oxidation of Human Low Density Lipoprotein,Proc. Natl Acad. Sci. USA 90, 45–49.PubMedCrossRefGoogle Scholar
  220. 220.
    Hicks, M., and Gebicki, J.M. (1981) Inhibition of Peroxidation in Linoleic Acid Membranes by Nitroxide Radicals, Butylated Hydroxy Toluene and α-Tocopherol,Arch. Biochem. Biophys. 210, 56–63.PubMedCrossRefGoogle Scholar
  221. 221.
    Martemianov, V.S., Denisov, E.T., and Samoilova, L.A. (1972)Izv. Akad. Nauk SSSR, Ser. Khim, 1039.Google Scholar
  222. 222.
    Grunger, E.H., and Tappel, A.L. (1970) Reactions of Biological Antioxidants. I. Fe(III)-Catalyzed Reactions of Lipid Hydroperoxides with alpha-Tocopherol,Lipids 5, 326–331.Google Scholar
  223. 223.
    Igarashi, O., Matsukawa, H., and Ingaki, C. (1976) Reactivity of alpha-Tocopherol with Hydroperoxide of Methyl Linoleate,J. Nutr. Sci. Vitaminol. 22, 267–270.PubMedGoogle Scholar
  224. 224.
    Fukuzawa, K., and Fujii, T. (1992) Peroxide Dependent and Independent Lipid Peroxidation: Site-Specific Mechanisms of Initation by Chelated Iron and Inhibition by α-Tocopherol,Lipids 27, 227–233.PubMedGoogle Scholar
  225. 225.
    Minoti, G., and Aust, S.D. (1992) Redox Cycling of Iron and Lipid Peroxidation,Lipids 27, 219–226.Google Scholar
  226. 226.
    Cort, W.M., Mergens, W., and Greene, A. (1978) Stability of α- and γ-Tocopherol: Fe3+ and Cu2+ Interactions,J. Food Sci. 43, 797–798.CrossRefGoogle Scholar
  227. 227.
    Willson, R.L. (1979) Hydroxyl Radicals and Biological Damagein vitro: What Relevancein vivo?, inOxygen Free Radicals and Tissue Damage (Ciba Foundation Symposium 65), pp. 19–42, Excerpta Medica, Amesterdam.Google Scholar
  228. 228.
    Doba, T., Burton, G.W., Ingold, K.U., and Matsu, M. (1984) α-Tocopherol Decay: Lack of Effect of Oxygen,J. Chem. Soc. Chem. Commun. 461–462.Google Scholar
  229. 229.
    Kornhurst, O.J., and Mavis, R.D. (1979) Microsomal Lipid Peroxidation: Characterization of the Role of Iron and NADPH,Mol. Pharmacol. 17, 400–407.Google Scholar
  230. 230.
    Peers, K.E., and Coxon, D.T. (1983) Controlled Synthesis of Monohydroperoxides by α-Tocopherol Inhibited Autoxidation of Polyunsaturated Lipids,Chem. Phys. Lipids 32, 49–56.CrossRefGoogle Scholar
  231. 231.
    Peers, K.E., Coxon, D.T., and Chan, H.-W.-S. (1981) Autoxidation of Methyl Linolenate and Methyl Linoleate: The Effect of α-Tocopherol,J. Sci. Food. Agric. 32, 898–904.CrossRefGoogle Scholar
  232. 232.
    Loury, M., Bloch, R., and Francois, R. (1966) Use of Tocopherol as an Antioxidant in Fats,Rev. Fr. Corp. Gras 13, 747–752.Google Scholar
  233. 233.
    Terao, J., and Matsushita, S. (1986) The Peroxidizing Effect of α-Tocopherol on Autoxidation of Methyl Linoleate in Bulk Phase,Lipids 21, 255–260.Google Scholar
  234. 234.
    Buettner, G.R. (1993) The Pecking Order of Free Radicals and Antioxidants: Lipid Peroxidation, α-Tocopherol and Ascorbate,Arch. Biochem. Biophys. 300, 535–543.PubMedCrossRefGoogle Scholar
  235. 235.
    Kanner, J., and Mendel, H. (1979) Pro-Oxidant and Antioxidant Effects of Ascorbic Acid and Metal Salts in a β-Carotene-Linoleate Model System,J. Food. Sci. 42, 60–64.CrossRefGoogle Scholar
  236. 236.
    Nishina, A., Sakurai, Y., Hashimoto, K.-I., Isoda, Y., and Inatomi, H. (1992) Effect of Tocopherols on the Peroxidative Kinetics of Ethyl Eicosapentaenoate and Methyl Linoleate,Biosci. Biotech. Biochem. 56, 2060–2061.Google Scholar
  237. 237.
    Toth, B., and Patil, K. (1983) Enhancing Effect of Vitamin E on Murine Intestinal Tumerogenesis by 1,2-Dimethylhydrazine Dihydrochloride,J. Natl. Cancer. Inst. 70, 1107–1111.PubMedGoogle Scholar
  238. 238.
    Ikeda, N., and Fukuzumi, K. (1977) Synergistic Antioxidant Effect of Nucleic Acids and Tocopherols,J. Am. Oil. Chem. Soc. 54, 360–366.PubMedGoogle Scholar
  239. 239.
    Budowski, P., and Sklan, D. (1989) Vitamin E and A, inThe Role of Fats in Human Nutrition (Vergroesen, A.J., and Grawford, M., ess.) pp. 363–406, Academic Press Ltd., London.Google Scholar
  240. 240.
    Govind Rao, M.K., and Achaya, K.T. (1967) Role of Tocopherol as an Antioxidant in Safflower Oil,Fette Seifen Anstrichm. 69, 711–714.Google Scholar
  241. 241.
    Kovats, T.K., and Berndorfer-Kraszner, E. (1968) On the Antioxidative Mechanisms of alpha-, beta-, gamma-, and delta-Tocopherols in Lard,Nahrung 12, 407–414.Google Scholar
  242. 242.
    Marinova, E.M., and Yanishlieva, N.V. (1992) Effect of Temperature on the Antioxidative Action of Inhibitors in Lipid Autoxidation,J. Sci. Food Agric. 60, 313–318.CrossRefGoogle Scholar
  243. 243.
    Saucy, F., Ducret, F., Lambelet, P., and Löliger, J. (1990) The Fate of Antioxidant Radicals During Lipid Autoxidation. II. The Influence of Oxygen Supply on Lipid Autooxidation,Chem. Phys. Lipids 55, 215–221.CrossRefGoogle Scholar
  244. 244.
    Warner, K. (1993) Effects of Adding Various Tocopherol Ratios on the Stability of Purified Vegetable Oils,INFORM 4, 529.Google Scholar
  245. 245.
    Cort, W.M. (1974) Antioxidant Activity of Tocopherols, Ascorbyl Palmitate, and Ascorbic Acid and Their Mode of Action,J. Am. Oil Chem. Soc. 51, 321–325.PubMedGoogle Scholar
  246. 246.
    Yuki, E., and Ishikawa, Y. (1976) Tocopherol Content of Nine Vegetable Frying Oils and Their Changes Under Stimulated Deep-Fat Frying Conditions,J. Am. Oil Chem. Soc. 53, 673–376.PubMedGoogle Scholar
  247. 247.
    Dugan, L.R., and Kraybill, H.R. (1956) Tocopherols as Carry-through Antioxidants,J. Am. Oil Chem. Soc. 33, 527–528.Google Scholar
  248. 248.
    Porter, W.L., Black, E.D., and Drolet, A.M. (1989) Use of Polyamide Oxidative Fluorescence Test on Lipid Emulsions: Contrast in Relative Effectiveness of Antioxidants in Bulk Versus Dispersed Systems,J. Agric. Food Chem. 37, 615–624.CrossRefGoogle Scholar
  249. 249.
    Porter, W.L. (1993) Paradoxial Behaviour of Antioxidants in Food and Biological Systems,Toxicol. Ind. Health 9, 93–122.PubMedGoogle Scholar
  250. 250.
    Takahashi, M., Tsuchiya, J., and Niki, E. (1989) Scavenging of Radicals by Vitamin E in the Membranes as Studied by Spin Labelling,J. Am. Chem. Soc. 111, 6350–6353.CrossRefGoogle Scholar
  251. 251.
    Frankel, E.N., Huang, S.-W., Kanner, J., and German, J.B. (1994) Interfacial Phenomena in the Evaluation of Antioxidants: Bulk Oils Versus Emulsions,J. Agric. Food Chem. 42, 1054–1059.CrossRefGoogle Scholar
  252. 252.
    Pryor, W.A., Strickland, T., and Church, D.F. (1988) Comparison of the Efficiencies of Several Natural and Synthetic Antioxidants in Aqueous Sodium Dodecyl Sulfate Micelle Solutions,J. Am. Chem. Soc. 110, 2224–2229.CrossRefGoogle Scholar
  253. 254.
    Castle, L., and Perkins, M.J. (1986) Inhibition Kinetics of Chain-Breaking Phenolic Antioxidants in SDS Micelles. Evidence That Intermicellar Diffusion Rates May Be Rate-Limiting for Hydrophobic Inhibitors Such as α-Tocopherol,J. Am. Chem. Soc. 108, 6381–6382.CrossRefGoogle Scholar
  254. 255.
    Cillard, J., and Cillard, P. (1980) Behavior of alpha, gamma, and delta Tocopherols with Linoleic Acid in Aqueous Media,J. Am. Oil Chem. Soc. 57, 39–42.Google Scholar
  255. 256.
    Iwatsuki, M., Tsuchiya, J., Komuro, E., Yamamoto, Y., and Niki, E. (1994) Effects of Solvents and Media on the Antioxidant Activity of α-Tocopherol,Biochim. Biophys. Acta 1200, 19–26.PubMedGoogle Scholar
  256. 257.
    O'Brien, P.J. (1969) Intracellular Mechanisms for the Decomposition of a Lipid Peroxide. I. Decomposition of a Lipid Peroxide by Metal Ions, Heme Compounds and Nucleophiles,Can. J. Biochem. 47, 485–492.PubMedGoogle Scholar
  257. 258.
    Chen, H., Lee, D.J., and Schanus, E.G. (1992) The Inhibitory Effect of Water on the Co2+ and Cu2+-Catalyzed Decomposition of Methyl Linoleate Hydroperoxides,Lipids 27, 234–239.PubMedGoogle Scholar
  258. 259.
    Simic, M.G. (1980) Kinetic and Mechanistic Studies of Peroxy, Vitamin E and Antioxidant Free Radicals by Pulse Radiolysis, inAutoxidation in Food and Biological Systems (Simic, M.G., and Karel, M., eds.), pp. 17–26, Plenum Press, New York.Google Scholar
  259. 260.
    Lambelet, P., Saucy, F., and Löliger, J. (1984) Radical Exchange Reactions Between Vitamin E, Vitamin C and Phosphatides in Autoxidizing Polyunsaturated Lipids,Free Radic. Res. 20, 1–10.CrossRefGoogle Scholar
  260. 261.
    Gardner, H.W., Kleiman, R., Weisleder, D., and Inglett, G.E. (1977) Cysteine Adds to Lipid Hydroperoxides,Lipids 12, 655–660.PubMedGoogle Scholar
  261. 262.
    Sims, R.J., and Fioriti, J.A. (1977) Methional as an Antioxidant for Vegetable Oils,J. Am. Oil Chem. Soc., 54, 4–7.Google Scholar
  262. 263.
    Terao, J., Yamauchi, R., Murkami, H., and Matsushita, S. (1980) Inhibitory Effects of Tocopherols and β-Carotene on Singlet Oxygen-Initiated Photooxidation of Methyl Linoleate and Soybean Oil,J. Food Process Preserv. 4, 79–93.Google Scholar
  263. 264.
    Burton, G.W., and Ingold, K.U. (1984) β-Carotene: An Unsual Type of Antioxidant,Science 224, 569–573.PubMedCrossRefGoogle Scholar
  264. 265.
    Kennedy, T.A., and Leibler, D.C. (1992) Peroxy Radical Scavenging by β-Carotene in Lipid Bilayers: Effect of Oxygen Partial Pressure,J. Biol. Chem. 267, 4658–4663.PubMedGoogle Scholar
  265. 266.
    Golumbic, C., and Matill, H.A. (1941) Antioxidants and the Autoxidation of Fats. XIII. The Antioxygenic Action of Ascorbic Acid in Association with Tocopherols, Hydroquinones and Related Compounds,J. Am. Chem. Soc. 63, 1279–1280.CrossRefGoogle Scholar
  266. 267.
    Niki, F. (1980) Synergistic Inhibition of Oxidations by Vitamins E and C, inCellular Antioxidant Defence Mechanisms (Chow, C.K. ed.) pp. 111–122, CRC, Boca Raton.Google Scholar
  267. 268.
    Niki, E., Tsuchiya, J., Tanimura, R., and Kamiya, Y. (1982). Regeneration of Vitamin E from α-Chromanoxyl Radical by Glutathione and Vitamin C,Chem. Lett. 789–792.Google Scholar
  268. 269.
    Niki, E., Saito, M., Kawakami, A., and Kamiya, Y. (1984) Inhibition of Oxidation of Methyl Linoleate by Vitamin E and Vitamin C,J. Biol. Chem. 259, 4177–4182.PubMedGoogle Scholar
  269. 270.
    Niki, E., Kawakimi, A., Yamamoto, Y., and Kamiya, Y. (1985) Synergistic Inhibition of Oxidation of Soybean Phosphatidyl Choline Liposomes in Aqueous Dispersion by Vitamin E and Vitamin C,Bull. Chem. Soc. Japan 58, 1971–1975.CrossRefGoogle Scholar
  270. 271.
    Leung, H.W., Vang, M.J., and Mavis, R.D. (1981) The Cooperative Interaction Between Vitamin E and Vitamin C in Suppression of Peroxidation of Membrane Phospholipids,Biochim. Biophys. Acta 664, 266–272.PubMedGoogle Scholar
  271. 272.
    Barclay, L.R.C., Locke, S.J., and MacNeil, J.M. (1983) The Autoxidation of Unsaturated Lipids in Micelles, Synergism of Inhibitors: Vitamins C and E,Can. J. Chem. 61, 1288–1290.CrossRefGoogle Scholar
  272. 273.
    Barclay, L.R.C., Locke, S.J., and MacNeil, J.M. (1985) The Autoxidation of Unsaturated Lipids in Micelles, Synergism of Vitamin C with Lipid-Soluble Vitamin E and Water-Soluble Trolox,Can. J. Chem. 63, 366–374.CrossRefGoogle Scholar
  273. 274.
    Bascetta, E., Gunstone, F.D., and Watton, J.C. (1983) Electron Spin Resonance Study of the Role of Vitamin E and Vitamin C in the Inhibition of Fatty Acid Oxidation in a Model Membrane,Chem. Phys. Lipids 33, 207–210.PubMedCrossRefGoogle Scholar
  274. 275.
    Doba, T., Burton, G.W., and Ingold, K.U. (1985) Antioxidant and Co-Antioxidant Effect of Vitamin C. The Effect of Vitamin C Either Alone Or in the Presence of Vitamin E or a Water-Soluble Vitamin E Analogue, upon the Peroxidation of Aqueous Multi-Lamellar Phospholipid Liposomes,Biochim. Biophys. Acta 835, 298–303.PubMedGoogle Scholar
  275. 276.
    Lambelet, P., Saucy, F., and Löliger, J. (1985) Chemical Evidence for Interaction Between Vitamins E and C,Experientia 41, 1384–1388.PubMedCrossRefGoogle Scholar
  276. 277.
    McCay, P.B. (1985) Vitamin E: Interactions with Free Radicals and Ascorbate,Ann. Rev. Nutr. 5, 323–340.CrossRefGoogle Scholar
  277. 278.
    Löliger, J., Lambelet, P., Savoy, M.-C., and Ducret, F. (1986) Radical Exchange Between Autoxidizing Lipids, Vitamin E and Vitamin C in Binary Lipid/Water Systems,Fette Seifen Anstrichm. 88, 584–588.CrossRefGoogle Scholar
  278. 279.
    Niki, E. (1987) Interaction of Ascorbate and α-Tocopherol,Ann. N.Y. Acad. Sci. 498, 186–199.PubMedGoogle Scholar
  279. 280.
    Nijus, D., and Kelley, P.M. (1991) Vitamins C and E Donate Single Hydrogen Atomsin vivo, FEBS Lett. 284, 147–151.CrossRefGoogle Scholar
  280. 281.
    Scarpa, M., Rigo, A., Maisorino, M., Ursini, F., and Gregolinn, C. (1984) Formation of α-Tocopherol Radical and Recycling of α-Tocopherol by Ascorbic Acid During Peroxidation of Phosphatidyl Choline Liposomes: An Electron Paramagnetic Resonance Study,Biochim. Biophys. Acta 801, 215–219.PubMedGoogle Scholar
  281. 282.
    Sharma, M., and Buettner, G.R. (1993) Interaction of Vitamin C and Vitamin E During the Free Radical Stress in Plasma: An ESR Study,Free Radic. Biol. Med. 14, 649–653.PubMedCrossRefGoogle Scholar
  282. 283.
    Yi, O.-S., Han, D., and Shin, H.-K. (1991) Synergistic Antioxidative Effects of Tocopherol and Ascorbic Acid in Fish Oil/Lecithin/Water system,J. Am. Oil Chem. Soc. 68, 881–883.Google Scholar
  283. 284.
    Wayner, D.D.M., Burton, G.W., Ingold, K.U., Barklay, L.R.C., and Locke, S.J. (1987) The Relative Contributions of Vitamin E, Urate, Ascorbate and Proteins to the Total Peroxy Radical Trapping Antioxidant Activity of Human Blood Plasma,Biochim. Biophys. Acta 924, 408–419.PubMedGoogle Scholar
  284. 285.
    Ha, K.H., and Igarashi, O. (1988). Disappearance and Interrelationship of Tocopherol Analogues During Autoxidation of Corn Oil and Synergistic Effect ofl-Ascorbyl Palmitate with α-Tocopherol,Japan J. Food Sci. Technol. 35, 464–470.Google Scholar
  285. 286.
    Han, D., Yi, O.-S., and Shin, H.K. (1991) Solubilization of Vitamin C in Fish Oil and Synergistic Effect with Vitamin E in Retarding Oxidation,J. Am. Oil Chem. Soc. 68, 740–743.Google Scholar
  286. 287.
    Wang, X.C., and Grodon, M.H. (1993) Antioxidant Synergy Between Phosphatidylethanolamine and α-Tocopherylquinone,Food Chem. 48, 165–168.CrossRefGoogle Scholar
  287. 288.
    Buettner, G.R. (1993b) Ascorbate Autoxidation in the Presence of Iron and Copper Chelates,Free Radic. Res. Commun. 1, 349–353.Google Scholar
  288. 289.
    Evans, C.D., Cooney, P.M., Scholfield, C.R., and Dutton, H.J. (1954) Soybean “Lecithin” and Its Fractions as Metal-Inactivating Agents,J. Am. Oil Chem. Soc. 31, 295–297.Google Scholar
  289. 290.
    Hildebrand, D.H., Jerao, J., and Kito, M. (1984) Phospholipids Plus Tocopherols Increase Soybean Oil Stability,J. Am. Oil Chem. Soc. 61, 552–555.Google Scholar
  290. 291.
    Hudson, B.J.F., and Mahgoub, S.E.O. (1981) Synergism Between Phospholipids and Naturally Occuring Antioxidants in Leaf Lipids,J. Sci. Food Agric. 32, 208–210.CrossRefGoogle Scholar
  291. 292.
    Hudson, B.J.F., and Ghavami, M. (1984) Phospholipids as Antioxidant Synergists for Tocopherols in the Autoxidation of Edible Oils,Lebensm.-Wiss. u.-Technol. 17, 191–194.Google Scholar
  292. 293.
    Dziedzic, S.Z., and Hudson, B.J.F. (1984) Phosphatidyl Ethanolamine As a Synergist for Primary Antioxidants in Edible Oils,J. Am. Oil Chem. Soc. 61, 1042–1045.Google Scholar
  293. 294.
    Bazin, B., Cillard, J., Koskas, J.-P., and Cillard, P. (1984) Arachidonic Acid Autoxidation in an Aqueous Media: Effect of α-Tocopherol, Cysteine and Nucleic Acids,J. Am. Oil Chem. Soc. 61, 1212–1215.Google Scholar
  294. 295.
    Hamzawi, L.F. (1990) Role of Phospholipids and α-Tocopherol as Natural Antioxidants in Buffalo Butter Fat,Michwissenschaft 45, 95–97.Google Scholar
  295. 296.
    Szuhaj, B.F., and Sipos, E.F. (1989) Flavor Chemistry of Phospholipids, inFlavor Chemistry of Lipid Foods (Min, D.B., and Smouse, T.H., eds.) pp. 265–288, American Oil Chemists' Society, Champaign.Google Scholar
  296. 297.
    Linow, F., and Mieth, G. (1976) The Fat-Stabilizing Properties of Phosphatides. III. The Synergistic Action of Selected Phosphatides,Nahrung 20, 19–24.PubMedGoogle Scholar
  297. 298.
    Yee, J.J., and Shipe, W.F. (1981) Using Enzymatic Proteolysis to Reduce Copper-Protein Catalysis of Lipid Oxidation,J. Food Sci. 46, 966–967.CrossRefGoogle Scholar
  298. 299.
    Riisom, T., Sims, R.J., and Fioriti, J.A. (1980) Effect of Amino Acids on the Autoxidation of Safflower Oil in Emulsions,J. Am. Oil Chem. Soc. 57, 354–359.Google Scholar
  299. 300.
    Bishov, S.J., and Henick, A.S. (1972) Antioxidant Effect of Protein Hydrolyzates in a Freeze-Dried Model System,J. Food Sci. 37, 873–875.CrossRefGoogle Scholar
  300. 301.
    Yuki, E., Ishikawa, Y., and Yoshiwa, T. (1974) Antioxidative Activities of Amino Acids and Their Esters Under Various Conditions,J. Japan Oil Chem. Soc. 23, 497–500.Google Scholar
  301. 302.
    Yamagushi, N., and Fujimaki, M. (1974) Browning Reaction Products from Reducing Sugars and Amino Acids. XV. Comparison of Antioxidative Activity of Melanoidin with That of Tocopherol Homologues and the Synergistic Effect of Melanoidin with Tocopherols,Japan J. Food Sci. Technol. 21, 13–18.Google Scholar
  302. 303.
    El-Zeany, B.A., Janicek, G., and Pokorny, J. (1973) inProc. 3rd Symp. on Metal-Catalyzed Lipid Oxidation, pp. 177–183, Sept. 27–30, 1973, Institut des Corps Gras, Paris.Google Scholar
  303. 304.
    Kago, T., and Terao, J. (1995) Phospholipids Increase Radical Scavenging Activity of Vitamin E in a Bulk Oil Model System,J. Agric. Food Chem. 43, 1450–1454.CrossRefGoogle Scholar
  304. 305.
    Frankel, E.N., and Gardner, H.W. (1989) Effect of α-Tocopherol on the Volatile Thermal Decomposition Products of Methyl Linoleate Hydroperoxides,Lipids 24, 603–608.PubMedGoogle Scholar
  305. 306.
    Chan, H.W.S., and Levett, G. (1977) Autoxidation of Methyl Linolenate: Analysis of Methyl Hydrolinolenate Isomers by High-Performance Liquid Chromatography,Lipids 12, 837–840.Google Scholar
  306. 307.
    Chan, H.W.-S., Levett, G., and Matthew, J.A. (1979) The Mechanism of the Rearrangement of Linoleate Hydroperoxides,Chem. Phys. Lipids 24, 245–256.CrossRefGoogle Scholar
  307. 308.
    Porter, N.A., Weber, B.A., Weenen, H., and Khan, J.A. (1980) Autoxidation of Polyunsaturated Lipids: Factors Controlling the Stereochemistry of Product Hydroperoxides,J. Am. Chem. Soc. 102, 5597–5601.CrossRefGoogle Scholar
  308. 309.
    Neff, W.E., Frankel, E.N., and Weisleder, D. (1981) High-Pressure Liquid Chromatography of Autoxidized Lipids. II. Hydroperoxy Cyclic Peroxides and Other Secondary Products from Methyl Linolenate,Lipids 16, 439–448.Google Scholar
  309. 310.
    Coxon, D.T., Price, K.R., and Chan, H.W.-S. (1981) Formation, Isolation and Structural Determination of Methyl Linolenate Hydroperoxides,Chem. Phys. Lipids 28, 365–378.CrossRefGoogle Scholar
  310. 311.
    Coxon, D.T., Peers, K.E., and Rigby, N.M. (1984) Selective Formation of Dihydroperoxidesin the α-Tocopherol Inhibited Autoxidation of Methyl Linolenate,J. Chem. Soc. Chem. Commun: 67–68.Google Scholar
  311. 312.
    Yamagata, S., Murakami, H., Terao, J., and Matsushita, S. (1983) Non-Enzymatic Oxidation Products of Methyl Arachidonate,Agric. Biol. Chem. 47, 2791–2799.Google Scholar
  312. 313.
    Mergens, W.J. (1992) Tocopherol: Natural Phenolic Inhibitor of Nitrosation, inPhenolic Compounds in Food and Their Effects on Health, Vol. 2: Antioxidants and Cancer Prevention (Ho, C.-T., Lee, C.Y. and Huang, M.-T., eds.) pp. 350–366, ACS Ser 507, Washington D.C.Google Scholar
  313. 314.
    Pignatelli, B., Friesen, M., and Walker, E.A. (1980) The Role of Phenols in Catalysis of Nitrosamine Formation,IARC Sci. Pub. (Lyon)31, 95–105.Google Scholar
  314. 315.
    Kurechi, T., Kikugawa, K., and Kato, T. (1979) C-Nitrosation of Sesamol and Its Effects onN-Nitrosamine Formationin vitro, Chem. Pharm. Bull. 27, 2442–2449.Google Scholar
  315. 316.
    Kamm, J.J., Dashman, T., Newmark, H., and Mergens, W.J. (1977) Inhibition of Amine-Nitrite Hepatotoxicity by α-Tocopherol,Toxicol. Appl. Pharm. 41, 575–583.CrossRefGoogle Scholar
  316. 317.
    Lathia, D., and Blum, A. (1989) Role of Vitamin E as Nitrite Scavenger andN-Nitrosamine Inhibitor: A Review,Int. J. Vit. Nutr. Res. 59, 430–438.Google Scholar
  317. 318.
    Davies, R., and McWeeny, D.J. (1977) Catalytic Effect of Nitrosophenols onN-Nitrosamine Formation,Nature 266, 657–658.PubMedCrossRefGoogle Scholar
  318. 319.
    Davies, R., Dennis, M.J., Massey, R.C., and McWeeny, D.J. (1978) Some Effects of Phenol- and Thiol-Nitrosation Reactions onN-Nitrosamine Formation, inEnvironmental Aspects of N-Nitrosocompounds (Walker, E.A., Castegnaro, M., Griciute, L. and Lyle, R.E., eds.) Vol. 19, pp. 183–199, IARC Scientific Publications, Lyon.Google Scholar
  319. 320.
    Davies, R., Massey, R.C., and McWeeny, D.J. (1980) The Catalysis of TheN-Nitrosation of Secondary Amines by Nitrosophenols.Food Chem. 6, 115–122.CrossRefGoogle Scholar
  320. 321.
    Tannenbaum, S.R., and Mergens, W. (1980) Reaction of Nitrite with Vitamins C and E,Ann. N.Y. Acad. Sci. 355, 267–277.PubMedGoogle Scholar
  321. 322.
    Janzen, E.G., Wilcox, A.L., and Monoharan, V. (1993) Reactions of Nitric Oxide with Phenolic Antioxidants and Phenoxyl Radicals,J. Org. Chem. 58, 3597–3599.CrossRefGoogle Scholar
  322. 323.
    Cooney, R.V., and Ross, P.D. (1987)N-Nitosation andN-Nitration of Morpholine by Nitrogen Dioxide in Aqueous Solution: Effects of Vanillin and Related Phenols,J. Agric. Food Chem. 35, 789–793.CrossRefGoogle Scholar
  323. 324.
    Cooney, R.V., Franke, A.A., Harwood, P.J., Hatch-Pigott, V., Custer, L.J., and Mordan, L.J. (1993) γ-Tocopherol Detoxification of Nitrogen Dioxide: Superiority to α-Tocopherol,Proc. Natl. Acad. Sci. USA 90, 1771–1775.PubMedCrossRefGoogle Scholar

Copyright information

© AOCS Press 1996

Authors and Affiliations

  • Afaf Kamal-Eldin
    • 1
  • Lars-Åke Appelqvist
    • 1
  1. 1.Division of Food Chemistry, Department of Food ScienceSwedish University of Agricultural SciencesUppsalaSweden
  2. 2.Department of Food ScienceUppsalaSweden

Personalised recommendations