Advertisement

Quantifying electrocardiogram RT-RR variability interactions

  • A. Porta
  • G. Baselli
  • E. Caiani
  • A. Malliani
  • F. Lombardi
  • S. Cerutti
Cardiac Measurement

Abstract

A dynamic linear parametric model is designed to quantify the dependence of ventricular repolarisation duration variability on heart period changes and other immeasurable factors. The model analyses the beat-to-beat series of the RR duration and of the interval between R- and T-wave apexes (RT period). Directly from these two signals, a parametric identification procedure and spectral decomposition techniques allow RT variability to be divided into RR-related and RR-unrelated parts and allow the RT-RR transfer function to be calculated. RT variability is driven by RR changes at low frequency (LF, around 0.1 Hz) and high frequency (HF, at the respiratory rate), whereas, at very low frequencies, the RR-unrelated contribution to the total RT variability is remarkable. During tilt at LF the RR-related RT percentage power increases (p<0.02), the RR-unrelated RT percentage power remains unchanged, the gain of the RT-RR relationship largely increases (p<0.001), and the phase is not significantly modified. Both the RR-related and the RR-unrelated RT percentage powers at LF are not affected by controlled respiration, and an increase in the RT-RR gain at HF is observed (p<0.02). The proposed analysis may help to describe the regulation of the ventricular repolarisation process and to extract indexes quantifying the coupling between heart period and ventricular repolarisation interval changes.

Keywords

RT variability RR variability RT-RR interaction model RT-RR transfer function Parametric identification Spectral decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike, H. (1974): ‘A new look at the statistical model identification’,IEEE Trans. Autom. Contr,19, pp. 716–723zbMATHMathSciNetCrossRefGoogle Scholar
  2. Baselli, G., Porta, A., Ferrari, G., Cerutti, S., Rimoldi, O., Pagani, M., andMalliani, A. (1993): ‘Multivariate ARMA spectral decomposition in the assessment of cardiovascular variabilities’. Comp. in Cardiol. Conf., (IEEE Computer Society Press), pp. 731–734Google Scholar
  3. Baselli, G., Porta, A., Rimoldi, O., Pagani, M., andCerutti S. (1997): ‘Spectral decomposition in multi-channel recordings based on multi-variate parametric identification’,IEEE Trans.,BME-44, pp. 1092–1101Google Scholar
  4. Bazett, H. C. (1920): ‘An analysis of the time-relations of electrocardiograms’,Heart,7, pp. 353–370Google Scholar
  5. Bexton, R. S., Vallin, H. O., andCamm, A. J. (1986): ‘Diurnal variation of the QT interval: influence of the autonomic nervous system’,Br. Heart J.,55, pp. 253–258Google Scholar
  6. Browne, K. F., Prystowsky, E., Heger, J. J., andZipes, D. P. (1983): ‘Modulation of the Q-T interval by the autonomic nervous system’,Pace,6, pp. 1050–1055Google Scholar
  7. Franz, M. R., Swerdlow, C. D., Liem, B. L., andSchaefer, J. (1989): ‘Cycle-length dependence of human ventricular action potential duration in steady and non-steady state’,in Butrous, G. S., andSchwartz, P. J. (Eds.): ‘Clinical aspects of ventricular repolarization’ (Farend Press, London) pp. 163–174Google Scholar
  8. Johnsen, S. J., andAndersen, N. (1978): ‘On power estimation in maximum entropy spectral analysis’,Geophysics,43, pp. 681–690CrossRefGoogle Scholar
  9. Kay, S. M. (1988): ‘Modern spectral analysis: theory and applications’ (Prentice Hall, Englewood Cliffs, New Jersey)Google Scholar
  10. Lau, C. P. andWard, J. (1989): ‘QT hysteresis: the effects of an abrupt change in pacing rate’ inButrous, G. S. andSchwartz, P. J. (Eds.): ‘Clinical aspects of ventricular repolarization’ (Farrand Press, London) pp. 175–184Google Scholar
  11. Ljung, L., (1987): ‘System identification. Theory and methods’ (Prentice Hall, Englewood Cliffs, New Jersey)Google Scholar
  12. Lombardi, F., Sandrone, G., Porta, A., Torzillo, D., Terranova, G., Baselli, G., Cerutti, S., andMalliani, A. (1996): ‘Spectral analysis of short term R-Tapex interval variability during sinus rhythm and fixed atrial rate’,Eur. Heart J.,17, pp. 769–778Google Scholar
  13. Maison Blanche, P., Catuli, D., Fayn, J., andCoumel, P., (1996): ‘QT interval, heart rate and ventricular arrhythmias’,in Moss, A., andStern, S., (Eds.): ‘Non-invasive electrocardiology. Aspects of Holter monitoring’ (W. B. Saunders Company Ltd, London) pp. 383–404Google Scholar
  14. Merri, M., Alberti, M., andMoss, A. J. (1993): ‘Dynamic analysis of ventricular repolarisation duration from 24-hour Holter recordings’,IEEE Trans.,BME-40, pp. 1219–1225Google Scholar
  15. Nollo, G., Speranza, G., Grasso, R., Bonamini, R., Mangiardi, L., andAntolini, R. (1992): ‘Spontaneous beat-to-beat variability of the ventricular repolarisation duration’,J. Electrocardiol.,25, pp. 9–17CrossRefGoogle Scholar
  16. Porta, A., Lombardi, F., Benedetti, M., Sandrone, G., Baselli, G., Malliani, A., andCerutti, S., (1994): ‘Reliability of the measurement of the RT variability’. Comp. in Cardiol. Conf. (IEEE Computer Society Press) pp. 217–220Google Scholar
  17. Porta, A., Baselli, G. E., Caiani, G. Scarpellini, Sandrone, G., Malliani, A., Cerutti, S., andLombardi, F., (1996): ‘Model for RT-RR variability interaction assessment’. Comp. in Cardiol. Conf., (IEEE Computer Society Press) pp. 281–284Google Scholar
  18. Schwartz, P. J., Periti, M., andMalliani, A., (1975) ‘The long Q-T syndrome’,Am. Heart J.,89, pp. 378–390CrossRefGoogle Scholar
  19. Söderström, T. (1974): ‘On the convergence properties of the generalised least squares identification method’,Automatica,10, pp. 617–626zbMATHCrossRefGoogle Scholar

Copyright information

© IFMBE 1998

Authors and Affiliations

  • A. Porta
    • 1
  • G. Baselli
    • 2
  • E. Caiani
    • 1
  • A. Malliani
    • 3
  • F. Lombardi
    • 3
  • S. Cerutti
    • 1
  1. 1.Dipartimento di BioingegneriaPolitecnico di MilanoMilanoItaly
  2. 2.Dipartimento di Elettronica per l'AutomazioneUniversita' di BresciaBresciaItaly
  3. 3.Medicina Interna II, Ospedale L. SaccoUniversita' di MilanoMilanoItaly

Personalised recommendations