, Volume 31, Issue 2, pp 179–185 | Cite as

Effects of clofibrate on lipids and fatty acids of mouse liver

  • G. L. Pennacchiotti
  • N. P. Rotstein
  • M. I. Aveldaño


Clofibrate administration significantly altered the amount and fatty acid composition of lipids in mouse liver. The net content of phospholipids (PL) increased and that of triacylglycerols (TG) decreased concomitantly with liver enlargement in mice treated for two weeks with this drug (0.5% w/w in the food). The highest increase among PL was in phosphatidylcholine; other components either showed lower increases or, as in the case of sphingomyelin and the plasmalogens, decreased. In all lipid classes the treatment resulted in altered ratios between major saturates, between saturates and monoenes, and between major polyenes. Among these, 20∶3n–6 and 22∶5n–3 increased several-fold, and the 20∶3n–6/20∶4n–6 and 22∶5n–3/22∶6n–3 ratios increased due to a more active formation of the precursors than of the corresponding products. This change affected all glycerolipid classes. Liver sphingomyelin showed a relative enrichment in monoenoic fatty acids like 22∶1 and 24∶1, caused by a net decrease in the amount of saturates, particularly 22∶0 and 24∶0. The stimulated membrane proliferation imposed by clofibrate must increase phospholipid synthesis and, hence, the need for fatty acids. The results suggest that these demands are met mostly by TG acyl groups, either directly or after oxidation/desaturation processes. This was apparently the case for the polyenoic fatty acids of the n-6 and n-3 series. The longer chain (C22 and C24) components decreased, suggesting that their oxidation was stimulated to provide part of the required (C20 and C22) polyenes.


Fatty Acid Oxidation Clofibrate Clofibric Acid Zellweger Syndrome Monoenoic Fatty Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





gas-liquid chromatography








polyunsaturated fatty acids






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stäubli, W., and Hess, R. (1975) Lipoprotein Formation in the Liver Cell. Ultrastructural and Functional Aspects Relevant to Hypolipidemic ActionHypolipidemic Agents (Kritchevsky, D., ed.), Springer-Verlag, Berlin and New York,Hand. Exp. Pharmacol. 41, 229–289.Google Scholar
  2. 2.
    Reddy, J.K., and Lalwani, N.D. (1983) Carcinogenesis by Hepatic Peroxisome Proliferators. Evaluation of the Risk of Hypolipidemic Drugs and Industrial Plasticizers to Humans,CRC Crit. Rev. Toxicol. 12, 1–58.Google Scholar
  3. 3.
    Lazarow, P.B., and De Duve, C. (1976) A Fatty Acyl-CoA Oxidizing System in Rat Liver Peroxisomes: Enhancement by Clofibrate, a Hypolipidemic Drug,Proc. Natl. Acad. Sci. USA 73, 3034–3046.CrossRefGoogle Scholar
  4. 4.
    Lazarow, O.B. (1978) Rat Liver Peroxisomes Catalyze the β-Oxidation of Fatty Acids,J. Biol. Chem. 253, 1522–1528.PubMedGoogle Scholar
  5. 5.
    Mannaerts, G.P., Debeer, L.J., Thomas, J., and De Schepper, P.J. (1979) Mitochondrial and Peroxisomal Fatty Acid Oxidation in Liver Homogenates and Isolated Hepatocytes from Control and Clofibrate Treated Rats,J. Biol. Chem. 254, 4585–4595.PubMedGoogle Scholar
  6. 6.
    Lipsky, N.G., and Pedersen, P.L. (1982) Perturbation by Clofibrate of Mitochondrial Level in Animal Cells.J. Biol. Chem., 257, 1473–1481.PubMedGoogle Scholar
  7. 7.
    Kawashima, Y., Horii, S., Matsunaga, T., Hirose, A., Adachi, T., and Kozuka, H. (1989) Co-Induction by Peroxisome Proliferators of Microsomal 1-Acylglycerophosphocholine Acyltransferase with Peroxisomal β-oxidation in Rat Liver,Biochim. Biophys. Acta 1005, 123–129.PubMedGoogle Scholar
  8. 8.
    Isseman, I., and Green, S. (1990) Activation of a Member of the Steroid Hormone Receptor Superfamily by Peroxisome Proliferators,Nature 347, 645–650.CrossRefGoogle Scholar
  9. 9.
    Göttlicher, M., Widmark, E., Li, Q., and Gustaffson, J.A. (1992) Fatty Acids Activate a Chimera of the Clofibric Acid-Activated Receptor and the Glucocorticoid Receptor.Proc. Natl. Acad. Sci. USA 89, 4653–4657.PubMedCrossRefGoogle Scholar
  10. 10.
    Bremer, J., Osmundsen, H. Christiansen, R.Z., and Borrebaek, B. (1981) Clofibrate,Methods Enzymol.72, 506–519.PubMedCrossRefGoogle Scholar
  11. 11.
    Folch, J., Lees, M., and Sloane-Stanley, Y.G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues,J. Biol. Chem. 226, 497–509.PubMedGoogle Scholar
  12. 12.
    Rouser, G., Fleischer, S., and Yamamoto, A. (1970) Two Dimensional Thin Layer Chromatographic Separation of Polar Lipids and Determination of Phospholipids by Phosphorus Analysis of Spots,Lipids 5, 494–496.PubMedGoogle Scholar
  13. 13.
    Arvidson, G.A.E. (1968) Structural and Metabolic Heterogeneity of Rat Liver Glycerophosphatides.Eur. J. Biochem. 4, 478–486.PubMedCrossRefGoogle Scholar
  14. 14.
    Aveldaño, M.I., Rotstein, N.P. and Vermouth, N.T. (1992) Occurrence of Long and Very Long Polyenoic Fatty Acids of the n-9 Series in Rat Spermatozoa,Lipids 27, 676–680.PubMedGoogle Scholar
  15. 15.
    Morrison, W.R., and Smith, L.M. (1964) Preparation of Fatty Acid Methyl Esters and Dimethylacetals from Lipids with Boron Fluoride,J. Lipid Res. 5, 600–608.PubMedGoogle Scholar
  16. 16.
    van den Bosch, H., Schutgens, R.B.H., Wanders, R.J.A., and Tager, J.M. (1992) Biochemistry of Peroxisomes,Annu. Rev. Biochem. 61, 157–197.PubMedCrossRefGoogle Scholar
  17. 17.
    Tanaka, K., Smith, P.F., Stromberg, P.C., Eydelloth, R.S., Herold, E.G., Grossman, S.J., Erank, J.D., Hertzog, P.R., Sofer, K.A., and Keenan, K.P. (1992) Studies of Early Hepatocellular Proliferation and Peroxisomal Proliferation in Sprague-Dawley Rats Treated with Tumorigenic Doses of Clofibrate,Toxicol. Appl. Pharmacol. 116, 71–77.PubMedCrossRefGoogle Scholar
  18. 18.
    Stott, W.T. (1988) Chemically-Induced Proliferation of Peroxisomes-Implications for Risk Assessment,Regul. Toxicol. Pharmacol. 8, 125–159.PubMedCrossRefGoogle Scholar
  19. 19.
    Kawashima, Y., Matsunaga, T., Hirose, A., Ogata, T., and Kozuka, H. (1989) Induction of Microsomal 1-Acylglycerophosphocholine Acyltransferase by Peroxisome Proliferators in Rat Kidney; Co-induction with Peroxisomal β-Oxidation,Biochim. Biophys. Acta 1006, 214–218.PubMedGoogle Scholar
  20. 20.
    Kawashima, Y., Hirose, A., and Kozuka, H. (1984) Selective Increase in the Acylation of 1-Acyl-Glycerophosphorylcholine in Liver of Rats and Mice by Peroxisome Proliferators,Biochim. Biophys. Acta 793, 232–237.PubMedGoogle Scholar
  21. 21.
    Kawashima, Y., Hirose, A., and Kozuka, H. (1984) Modification by Clofibric Acid of the Acyl Composition of Glycerolipids in Rat Liver. Possible Involvement of Fatty Acid Chain Elongation and Desaturation,Biochim. Biophys. Acta 795, 543–551.PubMedGoogle Scholar
  22. 22.
    Kawashima, Y., Musoh, K., and Kozuka, H. (1990) Peroxisome Proliferators Enhance Linoleic Acid Metabolism in Rat Liver,J. Biol. Chem. 256, 9170–9175.Google Scholar
  23. 23.
    Hiltunen, K.J., Kärki, T., Hassinen, I.E., and Osmundsen, H.J. (1986) β-Oxidation of Polyunsaturated Fatty Acids by Rat Liver Peroxisomes,J. Biol. Chem. 261, 16484–16493.PubMedGoogle Scholar
  24. 24.
    Hovik, R., and Osmundsen, H. (1987) Peroxisomal β-Oxidation of Long-Chain Fatty Acids Possessing Different Extents of Unsaturation,Biochem. J. 247, 531–535.PubMedGoogle Scholar
  25. 25.
    Osmundsen, H., Thomassen, M.S., Hiltunen, J.K., and Berge, R.K. (1987) Physiological Role of Peroxisomal β-Oxidation,Peroxisomes in Biology and Medicine (Fahimi, H.O., and Sies, H., eds.), pp. 152–159, Springer-Verlag, Heidelberg and New York.Google Scholar
  26. 26.
    Singh, I., Moser, A.B., Goldfischer, S., and Moser, H.W. (1984) Lignoceric Acid Is Oxidized in the Peroxisome: Implications for the Zellweger Cerebro-Hepato-Renal Syndrome and Adrenoleukodystrophy.Proc. Natl. Acad. Sci. USA 81, 4203–4207.PubMedCrossRefGoogle Scholar
  27. 27.
    Singh, H., Derwas, N., and Poulos, A. (1987) Very Long-Chain Fatty Acid Beta-Oxidation by Subcellular Fractions of Normal and Zellweger Syndrome Skin Fibroblasts,Arch. Biochem. Biophys. 257, 302–314.PubMedCrossRefGoogle Scholar
  28. 28.
    Lageweg, W., Sykes, J.E.C., Lopes-Cardozo, M., and Wanders, R.J.A. (1991) Oxidation of Very-Long-Chain Fatty Acids in Rat Brain: Cerotic Acid is β-Oxidized Exclusively in Rat Brain Peroxisomes,Biochim. Biophys. Acta 1085, 381–384.PubMedGoogle Scholar
  29. 29.
    Singh, I., Lazo, O., and Kremser, K. (1993) Purification of Peroxisomes and Subcellular Distribution of Enzymes Activities for Activation and Oxidation of Very-Long-Chain Fatty Acids in Rat Brain,Biochim. Biophys. Acta 1170, 44–52.PubMedGoogle Scholar
  30. 30.
    Sprecher, H. (1981) Biochemistry of Essential Fatty Acids.Prog. Lipid Res. 20, 13–22.PubMedCrossRefGoogle Scholar
  31. 31.
    Rustan, A.C., Christiansen, E.N., and Drevon, A.C. (1992) Serum Lipids, Hepatic Glycerolipid Metabolism and Peroxisomal Fatty Acid Oxidation in Rats Fed n-3 and n-6 Fatty Acids,Biochem. J. 283, 333–339.PubMedGoogle Scholar
  32. 32.
    Vamecq, J., Vallee, L. Lechene de la Porte, P., Fontaine, M. de Craemer, D., van den Branden, C., Lafont, H., Grataroli, R., and Nalbone, G. (1993) Effect of Various n-3/n-6 Fatty Acid Ratio Contents of High Fat Diets on Rat Liver and Heart Peroxisomal and Mitochondrial β-Oxidation,Biochim. Biophys. Acta 1170, 151–156.PubMedGoogle Scholar
  33. 33.
    Willumsen, N., Hexeberg, S., Skorve, J., Lundquist, M., and Berge, R.K. (1993) Docosahexaenoic Acid Shows No Triglyceride-Lowering Effects But Increases the Peroxisomal Fatty Acid Oxidation in Liver of Rats,J. Lipid Res. 34, 13–22.PubMedGoogle Scholar

Copyright information

© AOCS Press 1996

Authors and Affiliations

  • G. L. Pennacchiotti
    • 1
  • N. P. Rotstein
    • 1
  • M. I. Aveldaño
    • 1
  1. 1.Instituto de Investigaciones Bioquímicas de Bahía BlancaUniversidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y TécnicasBahía BlancaArgentina

Personalised recommendations