Transgenic Research

, Volume 1, Issue 4, pp 170–176 | Cite as

Translocation events demonstrated by molecular,in situ hybridization and chromosome pairing analyses in highly asymmetric somatic hybrid plants

  • S. Hinnisdaels
  • A. Mouras
  • G. Salesses
  • J. Veuskens
  • C. Taylor
  • G. B. Gharti-Chhetri
  • I. Negrutiu
  • M. Jacobs
Papers

Abstract

Cytological analyses show rearranged chromosomes in some highly asymmetric nuclear hybrids obtained after fusion of mesophyll protoplasts ofNicotiana plumbaginifolia (wild type) with γ-irradiated (100 krad), kanamycin-resistant mesophyll protoplasts ofPetunia hybrida. Molecular, cytogenetic andin situ hybridization analyses performed on the asymmetric somatic hybrid P1, previously identified as having a clearly metacentric chromosome besides a nearly completeNicotiana chromosome complement, are reported. Meiotic analysis andin situ hybridization experiments using ribosomal DNA as a probe showed that this metacentric chromosome represents a translocation of a chromosome fragment onto chromosome 9 ofN. plumbaginifolia. Southern hybridization with an rDNA probe showed that onlyNicotiana-specific rDNA was present.In situ hybridization experiments, using total genomic DNA ofP. hybrida as a probe, demonstrated that the translocated fragment representedPetunia DNA.

Keywords

asymmetric nuclear hybrids in situ hybridization totalPetunia DNA intergenomic translocation/recombination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agoudgil, S., Hinnisdaels S., Mouras, A., Negrutiu, I. and Jacobs, M. (1990) Metabolic complementation for a single gene function associated with partial and total loss of donor DNA in interspecific somatic hybrids.Theor. Appl. Genet. 80, 337–42.CrossRefGoogle Scholar
  2. Bates, G.W., Hasenkampf, C.A., Contolini, C.L. and Piastuch, W.C. (1987) Asymmetric hybridization inNicotiana by fusion of irradiated protoplasts.Theor. Appl. Genet. 74, 718–26.CrossRefGoogle Scholar
  3. de Vries, S.E., Ferwerda, M.A., Loonen, A.E.H.M., Pijnacker, L.P. and Feenstra, W.J. (1987) Chromosomes in somatic hybrids betweenNicotiana plumbaginifolia and a monoploid potato.Theor. Appl. Genet. 75, 170–6.CrossRefGoogle Scholar
  4. Dudits, D., Maroy, E., Praznovszky, T., Olah, Z., Gyorgyey, J. and Cella, R. (1987) Transfer of resistance traits from carrot into tobacco by asymmetric somatic hybridization: regeneration of fertile plants.Proc. Natl Acad. Sci. USA 84, 8434–8.PubMedCrossRefGoogle Scholar
  5. Famelaer, I., Gleba, Y.Y., Sidorov, V.A., Kaleda, V.A., Parokonny, A.S., Boryshuk, N.V., Cherep, N.N., Negrutiu, I. and Jacobs, M. (1989) Intrageneric asymmetric hybrids betweenNicotiana plumbaginifolia andNicotiana sylvestris obtained by ‘gamma’ fusion.Pl. Sci.,61, 105–17.CrossRefGoogle Scholar
  6. Ganal, M.W., Lapitan, N.L.V. and Tanksley, S.D. (1988) A molecular and cytogenetic survey of major repeated DNA sequences in tomato (Lycopersicon esculentum).Mol. Gen. Genet.,213, 262–8.CrossRefGoogle Scholar
  7. Gerlach, W.L. and Bedbrook, J.R. (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley.Nucl. Acids Res. 7, 1868–85.Google Scholar
  8. Gleba, Y.Y., Hinnisdaels, S., Sidorov, V.A., Kaleda, V.A., Parokonny, A.S., Boryshuk, N.V., Cherep, N.N., Negrutiu, I. and Jacobs, M. (1988) Intergeneric asymmetric hybrids betweenN. plumbaginifolia andAtropa belladonna obtained by ‘gamma’-fusion.Theor. Appl. Genet. 76, 760–6.CrossRefGoogle Scholar
  9. Harms, C.T. (1983) Somatic incompatibility in the development of higher plant somatic hybrids.Quart. Rev. Biol. 58, 325–51.CrossRefGoogle Scholar
  10. Harper, M.E., Ulrich, A. and Saunders, G.F. (1981) Localization of the human insulin gene to the distal end of the short arm of chromosome 11,Proc. Natl Acad. Sci. USA 78, 4458–60.PubMedCrossRefGoogle Scholar
  11. Hinnisdaels, S., Bariller, L., Mouras, A., Sidorov, V.A., Del-Favero, J., Veuskens, J., Negrutiu, I. and Jacobs, M. (1991) Highly asymmetric intergeneric nuclear hybrids betweenNicotiana andPetunia: evidence for recombinogenic and translocation events in somatic hybrid plants obtained by ‘gamma’ fusion.Theor. Appl. Genet. 82, 609–14.CrossRefGoogle Scholar
  12. Imamura, J., Saul, M.W. and Potrykus, I. (1987) X-ray irradiation promoted asymmetric somatic hybridization and molecular analysis of the products.Theor. Appl. Genet. 74, 445–50.CrossRefGoogle Scholar
  13. Karp, A. (1989) Can genetic instability be controlled in plant cell cultures? Feature article:IAPTC Newslet.,58, 3–11.Google Scholar
  14. Le, H.T., Armstrong, K.C. and Miki, B. (1989) Detection of rye DNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a probe.Pl. Mol. Biol. Rep. 7, 150–8.CrossRefGoogle Scholar
  15. Maniatis, T., Fritsch, E.F. and Sambrook, J. (1982)Molecular Cloning: a Laboratory Manual, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
  16. Mouras, A. and Lutz, A. (1982) Caryogramme deNicotiana tabacum et tentative d’identification des chromosomes par banding.Genetica 60, 41–8.CrossRefGoogle Scholar
  17. Mouras, A., Salesses, G. and Lutz, A. (1978) Sur l’utilisation des protoplastes en cytologie: amélioration d’une méthode récente en vue de l’identification des chromosomes mitotiques des genres.Nicotiana etPrunus. Caryologia 31, 117–27.Google Scholar
  18. Mouras, A., Wildenstein, C. and Salesses, G. (1986) Analysis of karyotype and C-banding pattern ofNicotiana plumbaginifolia using two techniques.Genetica 68, 197–202.CrossRefGoogle Scholar
  19. Mouras, A., Negrutiu, I. and Dessaux, Y. (1987) Phenotypic and genetic variations in crown gall tumour cells of tobacco.Theor. Appl. Genet. 74, 253–60.CrossRefGoogle Scholar
  20. Mouras, A., Negrutiu, I., Horth, M. and Jacobs, M. (1989) From repetitive DNA sequences to single copy gene mapping in plant chromosomes byin situ hybridization.Pl. Physiol. Biochem.,27, 161–8.Google Scholar
  21. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures.Physiol. Pl. 15, 473–97.CrossRefGoogle Scholar
  22. Piastuch, W.C. and Bates, G.W. (1990) Chromosomal analysis ofNicotiana asymmetric somatic hybrids by dot blotting andin situ hybridization.Mol. Gen. Genet. 222, 97–103.PubMedGoogle Scholar
  23. Pijnacker, L.P. and Ferwerda, M.A. (1984) Giemsa C-banding of potato chromosomes.Can J. Genet. Cytol. 26, 415–9.Google Scholar
  24. Rayburn, A.L. and Gill, B.S. (1985) Use of biotin-labelled probes to map specific DNA sequences on wheat chromosomes.J. Hered. 76, 78–81.Google Scholar
  25. Rigby, P.W.J., Dieckmann, M., Rhodes, C. and Berg, P. (1977) Labelling deoxyribonucleic acid to a high specific activityin vitro by nick translation with DNA polymerase I.Mol. Biol. 113, 237–51.CrossRefGoogle Scholar
  26. Schweizer, G., Ganal, M., Ninnemann, H. and Hemleben, V. (1988) Species-specific DNA sequences for identification of somatic hybrids betweenLycopersicon esculentum andSolanum acaule.Theor. Appl. Genet. 75, 679–84.CrossRefGoogle Scholar
  27. Shure, M., Wessler, S. and Fedoroff, N. (1983) Molecular identification and isolation of the Waxy locus in maize.Cell 35, 225–33.PubMedCrossRefGoogle Scholar
  28. Tepfer, D. (1984) Genetic transformation of several species of higher plants byAgrobacterium rhizogenes: phenotypic consequences and sexual transmission of the transformed genotype and phenotype.Cell 37, 959–67.PubMedCrossRefGoogle Scholar
  29. Wijbrandi, J., Zabel, P. and Koornneef M. (1990) Restriction fragment length polymorphism analysis of somatic hybrids betweenLycopersicon esculentum and irradiatedL. peruvianum: evidence for limited donor genome elimination and extensive chromosome rearrangements.Mol. Gen. Genet. 222, 270–7.PubMedCrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • S. Hinnisdaels
    • 1
  • A. Mouras
    • 2
  • G. Salesses
    • 3
  • J. Veuskens
    • 1
  • C. Taylor
    • 4
  • G. B. Gharti-Chhetri
    • 1
  • I. Negrutiu
    • 1
  • M. Jacobs
    • 1
  1. 1.Institute for Molecular BiologyFree University of BrusselsSt Genesius RodeBelgium
  2. 2.Université de Bordeaux II, IBCN-CNRSBordeaux CedexFrance
  3. 3.Laboratoire de CytologieCentre de Recherche de Bordeaux, INRAPont de la MayeFrance
  4. 4.Waite Agricultural Research InstituteUniversity of Adelaïde, Center for Cereal BiotechnologyGlen OsmondAustralia

Personalised recommendations