Computer analysis system of blood oxygen saturation in an animal hypoxia model

  • Y. X. Yang
  • B. S. Xie
  • Z. X. Zhou
  • J. N. Liu
  • Y. Y. Xue
  • G. L. Lv
Technical Note

Abstract

An experimental animal hypoxia model has been developed. It consists of two sensors (an in vitro and in vivo model), an experimental device and a computer signal processing system. This method can easily be applied to determine and analyse blood oxygen saturation at various hypoxia levels. It can also be used to evaluate the accuracy of pulse oximetry over a wide range of oxyhemoglobin desaturation levels. The DC and AC components of recorded red and infra-red signals, the dual-wavelength ratio R12 and the reading of a pulse oximeter (SpO2) can be automatically calculated and displayed on a computer screen. Preliminary results of the animal hypoxia test indicate that the measurements made by the instrument correlate well with the oxygen saturation readings of the automatic blood gas analyser AVL945. The computer analysis system is suitable for repeated estimations in the animal model.

Keywords

Pulse oximetry Animal hypoxia model Animal experiment analysis Computer processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klose, H. J., Volger, E., Brechtelsbauer, H., Heinich, L. andSchmid-Schönbein, H. (1972): ‘Microbiology and light transmission of blood, I and II’,Pflügers Arch.,333, pp. 126–155CrossRefGoogle Scholar
  2. Lindberg, L. G. (1991): ‘Photoplethysmography-methodological studies and applications’, Biomedical Engineering dissertation 262, Linköping University, SwedenGoogle Scholar
  3. Rodrigo, F. A. (1953): ‘The determination of the oxygenation of blood in vitro by using reflected light’,Amer. Heart J.,45, pp. 809–822CrossRefGoogle Scholar
  4. Shimada, Y., Nakashima, K.et al. (1991): ‘Evaluation of new reflectance pulse oximeter for clinical applications’,Med. Biol. Eng. Comput.,29, pp. 557–561CrossRefGoogle Scholar
  5. Steink, J. M. andShepherd, A. P. (1986): ‘Role of light scattering in whole blood oximetry’,IEEE Trans.,BME-33, pp. 294–301Google Scholar
  6. Takatani, S., Noda, H., Takano, H. andAkutsu, T. (1988): ‘A miniature hybrid reflection-type optical sensor for measurement of Hemoglobin content and oxygen saturation of whole blood’,IEEE Trans.BME-35, pp. 187–197Google Scholar
  7. Tremper, K. andBarker, S. (1989): ‘Pulse oximetry’,Anesthesiol.,70, pp. 98–108CrossRefGoogle Scholar
  8. Vegfors, M., Lindberg, L. G., Öberg, P. A. andLennmarken, C. (1993): ‘Accuracy of pulse oximetry at various haematocrits and during haemolysis in an in vitro model’,Med. Biol. Eng. Comput.31, pp. 135–141CrossRefGoogle Scholar
  9. Yoshiya, I., Shimada, Y. andTanaka, K. (1980): ‘Spectrophotometric monitoring of arterial oxygen saturation in the fingertip’,Med. Biol. Eng. Comput.,18, pp. 27–32CrossRefGoogle Scholar
  10. Yoshiya, I. andShimada, Y. (1983): ‘Non-invasive spectrophotometric estimation of arterial oxygen saturation in non-invasive physiological measurements’, vol. 2. ROLFE, P. (Ed.) Academic Press, pp. 251–286Google Scholar

Copyright information

© IFMBE 1998

Authors and Affiliations

  • Y. X. Yang
    • 1
  • B. S. Xie
    • 2
  • Z. X. Zhou
    • 1
  • J. N. Liu
    • 1
  • Y. Y. Xue
    • 2
  • G. L. Lv
    • 1
  1. 1.Department of Biological EngineeringHuazhong University of Science & TechnologyWuhanPeoples Republic of China
  2. 2.Institute of Space Medicine & Medical EngineeringBeijingPeoples Republic of China

Personalised recommendations