Accuracy of single-dipole inverse solution when localising ventricular pre-excitation sites: simulation study

  • R. HrenEmail author
  • G. Stroink
  • B. M. Horáček


Different factors are investigated that may affect the accuracy of an inverse solution that uses a single-dipole equivalent generator, in a standardised inhomogeneous torso model, when localising the pre-excitation sites. An anatomical model of the human ventricular myocardium is used to simulate body surface potential maps (BSPMs) and magnetic field maps (MFMs) for 35 pre-excitation sites positioned on the epicardial surface along the atrioventricular ring. The sites of pre-excitation activity are estimated by the single-dipole method, and the measure for the accuracy of the localisation is the localisation error, defined as the distance between the location of the best-fitting single dipole and the acutal site of pre-excitation in the ventricular model. The findings indicate that, when the electrical properties of the volume conductor and lead positions are precisely known and the ‘measurement’ noise is added to the simulated BSPMs and MFMs, the single-dipole method optimally localises the pre-excitation activity 20 ms after the onset of pre-excitation, with 0.71±0.28 cm and 0.65±0.30 cm using BSPMs and MFMs, respectively. When the standard torso model is used to localise the sites of onset of the pre-excitation sequence initiated in four individualised torso models, the maximum errors are as high as 2.6–3.0 cm (even though the average error, for both the BSPM and MFM localisations, remains within the 1.0–1.5 cm range). In spite of these shortcomings, it is thought that single-dipole localisations can be useful for non-invasive pre-interventional planning.


Biomagnetism Magnetocardiography Body surface potential mapping Electrocardiography Single dipole source model Inverse solution Localisation Imaging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bruder, H., Killman, R., Moshage, W., Weismüller, P., Achen-Bach, S., andBömmel, F. (1994a): ‘Biomagnetic localisation of electrical current sources in the human heart with realistic volume conductors using the single-current-dipole model’,Phys. Med. Biol.,39, pp. 655–668CrossRefGoogle Scholar
  2. Bruder, H., Scholz, B., andAbraham-Fuchs, K. (1994b): ‘The influence of inhomogeneous volume conductor model on the ECG and the MCG’,Phys. Med. Biol.,39, pp. 1949–1968CrossRefGoogle Scholar
  3. Czapski, P., Ramon, C., Huntsman, L. L., Bardy, G. H., andKim, Y. (1996): ‘On the contribution of volume currents to the total magnetic field resulting from the heart excitation process: A simulation study’,IEEE Trans.,BME-43, pp. 95–104Google Scholar
  4. Fenici, R., Melillo, G., andMaselli, M. (1991): ‘Clinical magnetocardiography’,Int. J. Card. Imag.,7, pp. 151–167CrossRefGoogle Scholar
  5. Forsman, K., Neonen, J., Purcell, C., andStroink, G. (1992): ‘Biomagnetic inverse solution with a realistic torso model’, inHoke, M., Erné, S. N., Okada, Y., andRomani, G. L. (Eds.): ‘Biomagnetism: clinical aspects’ (Elsevier, Amsterdam) pp. 819–823Google Scholar
  6. Gulrajani, R. M., Pham-Huy, H., Nadeau, R. A., Savard, P., deGulse, J., Primeau, R. E., andRoberge, F. A. (1984): ‘Application of the single moving dipole inverse solution to the study of the Wolff-Parkinson-White syndrome in man’,J. Electrocardiol.,17, pp. 271–287Google Scholar
  7. Gulrajani, R. M., Roberge, F. A., andSavard, P. (1989): ‘The inverse problem of electrocardiography’,inMacfarlane, P. W., andLawrie, T. D. V. (Eds.) ‘Comprehensive electrocardiology’ (Pergamon Press, New York) pp. 237–288Google Scholar
  8. Horáček, B. M. (1974): ‘Numerical model of an inhomogeneous human torso’,Adv. Cardiol.,10, pp. 51–57Google Scholar
  9. Hren, R. (1993): ‘The effect of inhomogeneities on electrocardiographic and magnetocardiographic inverse solutions: Application in the localisation of ventricular pre-excitation sites’, M.Sc., thesis, Dalhousie Univeristy), Halifax, CanadaGoogle Scholar
  10. Hren, R. (1994): ‘Comparison between complex and single-dipole source models: Application in the localisation of ventricular prexcitation sites’,inZajc, B., andSolina, F. (Eds.): ‘Proc. 3rd Electrotechn. Comp. Sci. Conf. ERK’94, Vol. B’ (ERK, Portorož) pp. 369–371Google Scholar
  11. Hren, R. (1996): ‘A realistic model of the human ventricular myocardium: Application to the study of ectopic activation’. Ph. D. thesis, Dalhousie University, Halifax, CanadaGoogle Scholar
  12. Hren, R., andHoráček, B. M. (1997): ‘Value of simulated body surface potential maps as templates in localising sites of ectopic activation for radiofrequency ablation’,Physiol. Meas.,18, pp. 373–400CrossRefGoogle Scholar
  13. Hren, R., Nenonen, J., MacInnis, P., andHoráček, B. M. (1995a): ‘Simulated body-surface potential maps for paced activation sequences in human ventricles’,inMurray, A., andArzbaecher, R. (Eds.): ‘Computers in cardiology’ (IEEE Computer Society Press, Piscataway) pp. 95–98Google Scholar
  14. Hren, R., andStroink, G. (1995): ‘Application of surface harmonic expansions for modeling the human torso’,IEEE Trans.,BME-42, pp. 521–524Google Scholar
  15. Hren, R., MacLeod, R. S., Stroink, G., andHoráček, B. M. (1997): ‘Assessment of spatial resolution of body surface potential maps in localising ventricular tachycardia foci’,Biomed. Tech.,42 (Suppl. 1), pp. 41–44Google Scholar
  16. Hren, R., Stroink, G., andHoráček, B. M. (1998): ‘Spatial resolution of body surface potential maps and magnetic field maps: A simulation study applied to the identification of ventricular preexcitation sites’,Med. Biol. Eng. Comp.,36, pp. 145–157Google Scholar
  17. Hren, R., Zhang, X., andStroink, G. (1995b): ‘The effect of conductivity inhomogeneities on the body-surface potential and magnetic field inverse solutions’,inDeecke, L., BaumgartnerC., Stroink, G., andWilliamson, S. J. (Eds.): ‘Biomagnetism: fundamental research and clinical applications’ (Elsevier IOS Press, Amsterdam) pp. 680–683Google Scholar
  18. Hren, R., Zhang, X., andStroink, G. (1996): ‘Comparison between electrocardiographic and magnetocardiographic inverse solutions using the boundary element method’,Med. Biol. Eng. Comp.,34, pp. 110–114CrossRefGoogle Scholar
  19. Huskamp, G. J., andvan Oosterom, A. (1989): ‘Tailored versus realistic geometry in the inverse problem of electrocardiography’,IEEE Trans.,BME-36, pp. 827–835Google Scholar
  20. Jackman, W. M., Wang, X., Friday, K. J., Roman, C. A., Moulton, K. P., andBeckman, K. J. (1991): ‘Catheter ablation of accessory atrioventricular pathways (Wolff-Parkinson-White syndrome) by radiofrequency current’,N. Engl. J. Med.,324, pp. 1605–1611CrossRefGoogle Scholar
  21. Johnson, C. R., MacLeod, R. S., andErshler, P. R. (1992): ‘A computer model for the study of electrical current flow in the human thorax’,Comput. Biol. Med.,22, pp. 305–323CrossRefGoogle Scholar
  22. Klepfer, R. N., Johnson, C. R., andMacLeod, R. S. (1997): ‘The effects of inhomogeneities and anisotropies on electrocardiographic fields: A three-dimensional finite element study’,IEEE Trans.,BME-44, pp. 709–716Google Scholar
  23. Lamothe, M. J. R., andStroink, G. (1991): ‘Orthogonal expansions: Their applicability to signal extraction in electrophysiological mapping data’,Med. Biol. Eng. Comp.,29, pp. 522–528CrossRefGoogle Scholar
  24. Lesh, M. D., van Hare, G. F., Schamp, D. J., Chien, W., Lee, M. A., Griffin, J. C., Langberg, J. J., Cohen, T. J., Lurie, K.G. andScheinman, M. M. (1992): ‘Curative percutaneous catheter ablation using radiofrequency energy for accessory pathways in all locations: Results in 100 consecutive patients’,J. Am. Coll. Cardiol.,19, pp. 1303–1309CrossRefGoogle Scholar
  25. Mäkijärvi, M., Nenonen, J., Toivonen, L., Montonen, J., Katila, T., andSiltanen, P. (1993): ‘Magnetocardiography: Supraventricular arrhythmias and preexcitation’,Eur. Heart J. (Suppl. E),14, pp. 46–52Google Scholar
  26. Moshage, W., Abraham-Fuchs, K., Weikl, A., Schneider, S., Bachmann, K., andSchittenhelm, R. (1989): ‘Magnetocardiography (MCG): Non-invasive localisation of accessory conduction pathways in patients with WPW (Wolff-Parkinson-White) syndrome’,Electromedica,57, pp. 122–128Google Scholar
  27. Moshage, W., Achenbach, S., Gohl, K., andBachmann, K. (1996): ‘Evaluation of the non-invasive localisation accuracy of cardiac arrhythmias attainable by multichannel magnetocardiography (MCG)’,Int. J. Card. Imag.,12, pp. 47–59CrossRefGoogle Scholar
  28. Nadeau, R. A., Savard, P., Faugère, G., Shenasa, M., Pagé, P., Gulrajani, R. M., Guardo, R. A., andCardinal, R. (1998): ‘Localisation of pre-excitation sites in the Wolff-Parkinson-White syndrome by body surface potential mapping and a single moving dipole representation’,invanDam, R.Th., andvanOosterom, A. (Eds.): ‘Electrocardiographic body surface mapping’ (Martinus Nijhoff, Dordrecht) pp. 95–98Google Scholar
  29. Nenonen, J., Purcell, C., Horáček, B. M., Stroink, G., andKatila, T. (1991): ‘Magnetocardiographic functional localisation using a current dipole in a realistic torso’,IEEE Trans.,BME-38, pp. 658–664Google Scholar
  30. Nomura, M., Nakaya, Y., Saito, K., Kishi, F., Watatsuki, T., Miyoshi, H., Nishikado, A., Bando, S., Ito, S., andNishitami, H. (1994): ‘Noninvasive localisation of accessory pathways by magnetocardiographic imaging’,Clin. Cardiol.,17, pp. 239–244CrossRefGoogle Scholar
  31. Oostendorp, T. F., andvan Oosterom, A. (1989): ‘Source parameter estimation in inhomogeneous volume conductors of arbitrary shape’,IEEE Trans.,BME-36, pp. 382–391Google Scholar
  32. Oostendorp, T. F., van Oosterom, A., andHuiskamp, G. (1991): ‘Double layer versus single dipole model in the estimation of the site of early ventricular depolarization’inMurray, A., andArzbaecher, R. (Eds.). ‘Computers in cardiology’ (IEEE Computer Society Press, Los Alamitos, California), pp. 221–224Google Scholar
  33. Purcell, C. J., andStroink, G. (1991): ‘Moving dipole inverse solutions using realistic torso models’,IEEE Trans.,BME-38, pp. 82–84Google Scholar
  34. Savard, P., Mailloux, G. E., Roberge, F. A., Gulrajani, R. M., andGuardo, R. (1982): ‘Moving dipole inverse ECG and EEG solutions’,IEEE Trans.,BME-29, pp. 700–707Google Scholar
  35. Savard, P., Ackaoui, A., Gulrajani, R. M., Nadeau, R., Roberge, F. A., Guardo, R., andDubé, B. (1985): ‘Localisation of cardiac ectopic activity in man by a single moving dipole. Comparison of different computation techniques’,J. Electrocardiol.,18, pp. 211–222Google Scholar
  36. Sippensgroenewegen, A., Spekhorst, H., van Hemel, N. M., Kingma, J. H., Hauer, R. N. W., Janse, M. J., andDunning, A. J. (1990): ‘Body surface mapping of ectopic left and right ventricular activation: QRS spectrum in patients without structural heart disease’,Circulation,82, pp. 879–896Google Scholar
  37. Sippensgroenewegen, A., Spekhorst, H., van Hemel, N. M., Kingma, J. H., Hauer, R. N. W., Janse, M. J., andDunning, A. J. (1992): ‘Body surface mapping of ectopic left ventricular activation: QRS spectrum in patients with prior myocardial infarction’,Circ. Res.,71, pp. 1361–1378Google Scholar
  38. Stroink, G., Greek, L. S., Elliott, P., andNenonen J. (1992): ‘Is there a need for individualized torso models in magnetic inverse solutions?’,inHoke, M., Erné, S. N., Okada, Y., andRomani, G. L. (Eds.): ‘Biomagnetism: clinical aspects’ (Elsevier, Amsterdam) pp. 813–817Google Scholar
  39. Stroink, G. (1993): ‘Cardiomagnetic imaging’,inZaret, B. L., Kaufman, L., Berson, A. S., andDunn, R. A. (Eds.): ‘Frontiers in cardiovascular imaging’ (Raven Press, New York): pp. 161–177Google Scholar
  40. van Oosterom, A., andHuiskamp, G. (1989): ‘The effect of torso inhomogeneities on body surface potentials quantified using ‘tailored’ geometry’,J. Electrocardiol.,22, pp. 53–72CrossRefGoogle Scholar
  41. Weismüller, P., Abraham-Fuchs, K., Schneider, S., Richter, P., Kochs, M., Edrich, J., andHombach, V. (1991): ‘Biomagnetic non-invasive localisation of accessory pathways in Wolff-Parkinson-White syndrome’,PACE,14, pp. 1961–1965Google Scholar
  42. Weismüller, P., Abraham-Fuchs, K., Schneider, S., Richter, P., Kochs, M., andHombach, V. (1992): ‘Magnetocardiographic non-invasive localisation of accessory pathways in the Wolff-Parkinson-White syndrome by a multichannel system’,Eur. Heart J.,13, pp. 616–622Google Scholar

Copyright information

© IFMBE 1998

Authors and Affiliations

  1. 1.Nora Eccles Harrison Cardiovascular Research & Training InstituteUniversity of UtahSalt Lake CityUSA
  2. 2.Department of Physiology & BiophysicsDalhousie UniversityHalifaxCanada
  3. 3.Department of PhysicsDalhousie UniversityHalifaxCanada

Personalised recommendations