Skip to main content
Log in

Separation and quantitation of mono-, di-, and triglycerides and free oleic acid using thin-layer chromatography with flame-ionization detection

  • Method
  • Published:
Lipids

Abstract

α-Monoolein was prepared from glycidol and oleic acid by the regioselective opening of glycidol in the presence of an anionic resin. During the reaction, the lipochemical synthesis medium becomes enriched in monoolein, the effective emulsifying agent. This mixture can be analyzed by thinlayer chromatography coupled with flame-ionization detection (FID). The products and reagents do not need to be derivatized. Diglyceride and triglyceride by-products affecting the selectivity of the reaction also could be detected using this technique. Cholesterol was used as an internal standard. The factors influencing the separation, including the hydrogen flow rate, scan speed, and the composition of the developing solvent, were investigated. The degree of separation is highly sensitive to the hexane/diethyl ether ratio of the developing solvent. Good separation of triglyceride, oleic acid, the two diglycerides, cholesterol, α-monoolein, and glycidol was obtained with the mixture hexane/diethyl ether/formic acid (65:35:0.04, by vol). Detector response, detection limits, and rod-to-rod variations also were examined. A range of rod loads giving a straightforward relationship between FID response and amount of compound loaded (relative to oleic acid and α-monoolein) was defined. The accuracy of the quantification was illustrated by analysis of a mixture of oleic acid and α-monoolein standards of known composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CHO:

cholesterol

CV:

coefficient of variation

1,2-DO:

1,2-diolein

1,3-DO:

1,3-diolein

GL:

glycidol

HPLC:

high-performance liquid chromatography

MO:

α-monoolein

18:1:

oleic acid

TLC/FID:

thin-layer chromatography/flame-ionization detection

TO:

triolein

References

  1. Kabara, J.J. (1991) Chemistry and Biology of Monoglycerides in Cosmetic Formulations,Cosmet. Sci. Technol. Ser. 11, 311–344.

    CAS  Google Scholar 

  2. Rieger, M.M. (1990) Glyceryl Stearate: Chemistry and Use,Cosmetic & Toiletries 105, 51–57.

    CAS  Google Scholar 

  3. Rakotondrazafy, V. (1994) Valorisation Chimique du Glycérol: Synthèse du 1-Monooléate de Glycérol en Milieux Aqueux Catalysée par les Résines Echangeuses d’Anions,Thèse doctorale, Institut National Polytechnique de Toulouse, France 985, 16–22.

    Google Scholar 

  4. Park, Y.K., and Pastore, G.M. (1989) Esterificação de Ácido Graxo com Glicerol por Lipases Microbianas,Cienc. Tecnol. Aliment. 9, 163–171.

    CAS  Google Scholar 

  5. Prevot, A., and Coustille, J.L. (1982) Dosage des Monoglycérides par Chromatographie en Phase Gazeuse,Etud. Rech. 29, 17–24.

    CAS  Google Scholar 

  6. Renger, B., and Wenz, K. (1989) Quantitative HPTLC of Glyceryl Mono-Fatty Acids,J. Planar Chromatogr. 2, 24–27.

    CAS  Google Scholar 

  7. Christopoulou, C.N., and Perkins, E.G. (1986) High Performance Size Exclusion Chromatography of Fatty Acids, Mono-, Di- and Triglyceride Mixtures,J. Am. Oil Chem. Soc. 63, 679–684.

    CAS  Google Scholar 

  8. Poré, J., Houis, J.P., and Rasori, I. (1981) Application de la Chromatographie en Couche Mince sur Baguette, avec Détection par Ionisation de Flamme, au Contrôle de quelques Réactions en Lipochimie,Rev. Fr. des Corps Gras 3, 111–115.

    Google Scholar 

  9. Freedman, B., Pryde, E.H., and Mounts, T.L. (1984), Variables Affecting the Yields of Fatty Esters from Transesterified Vegetable Oil,J. Am. Oil Chem. Soc. 61, 1638–1643.

    CAS  Google Scholar 

  10. Tatara, T., Fujii, T., Kawase, T., and Minagawa, M. (1983) Quantitative Determination of Tri-, Di-, Monooleins and Free Oleic Acid by the Thin-Layer Chromatography-Flame-Ionization Detector System Using Internal Standards and Boric Acid Impregnated Chromarod,Lipids 18, 732–736.

    CAS  Google Scholar 

  11. Jamet, J.P., Vermeersch, G., Parmentier, J., Mouloungui, Z., Rakotondrazafy, V., Asdih, M., Gaset, A., Delmas, M., and Anuku, N. (1993) Procédé de Fabrication d’un Ester Glycidique à partir du Glycidol ou Dérivé, European Patent 0545477.

  12. Jamet, J.P., Staat, F., Mouloungui, Z., Peyrou, G., Gachen, C., Rakotondrazafy, V., and Gaset, A. (1995) Procédé et Installation pour la Fabrication d’un Ester de Glycérol d’Acide Gras, European Patent 95201983.4-2103 (EP 19.7.95); FR 9409510 (28.7.94).

  13. Carroll, K.K. (1961) Separation of Lipid Classes by Chromatography on Florisil,J. Lipid Res. 2, 135–141.

    PubMed  CAS  Google Scholar 

  14. Indrasena, W.M., Paulson, A.T., Parrish, C.C., and Ackman, R.G. (1991) A Comparison of Alumina and Silica Gel Chromarods for the Separation and Characterization of Lipid Classes by Iatroscan TLC-FID,J. Planar Chromatogr. 4, 182–188.

    CAS  Google Scholar 

  15. Freedman, B., Pryde, E.H., and Kwolek, W.F. (1984) Thin-Layer Chromatography/Flame Ionization Analysis of Tranesterified Vegetable Oils,J. Am. Oil Chem. Soc. 61, 1215–1220.

    CAS  Google Scholar 

  16. Gérin, C., and Goutx, M. (1993) Separation and Quantification of Phospholipids from Marine Bacteria with the Iatroscan Mark IV TLC-FID,J. Planar Chromatogr. 6, 307–312.

    Google Scholar 

  17. Ohshima, T., and Ackman, R.G. (1991) New Developments in Chromarod/Iatroscan TLC-FID/Analysis of Lipid Class Composition,J. Planar Chromatogr. 4, 27–34.

    CAS  Google Scholar 

  18. Ackman, R.G., and Ratnayake, W.M.N. (1989) Hydrogenation and Improved Accuracy of Lipid Quantitation by Iatroscan TLC/FID,J. Planar Chromatogr. 2, 219–223.

    CAS  Google Scholar 

  19. Tanaka, M., Takase, K., Ishii, J., Itoh, T., and Kaneko, H. (1984) Application of a Thin-Layer Chromatography-Flame-Ionization Detection System for the Determination of Complex Lipid Constituents,J. Chromatogr. 284, 433–440.

    Article  CAS  Google Scholar 

  20. Parrish, C.C., and Ackman, R.G. (1985) Calibration of the Iatroscan-Chromarod System for Marine Lipid Class Analyses,Lipids 20, 521–530.

    CAS  Google Scholar 

  21. Tanaka, M., Itoh, T., and Kaneko, H. (1980) Quantitative Determination of Isometric Glycerides, Free Fatty Acids and Triglycerides by Thin-Layer Chromatography-Flame Ionization Detector System,Lipids 15, 872–875.

    CAS  Google Scholar 

  22. Selucky, M.L. (1985) Quantitative Class Separation of Coal Liquids Using Thin-Layer Chromatography with Flame-Ionization Detection,Lipids 20, 546–551.

    CAS  Google Scholar 

  23. Trvzicka, E., Mares, P., Votruba, M., and Hrabak, P. (1990) Some Limitations of Plasma Lipid Analysis in Clinical Research by Thin-Layer Chromatography with Flame-Ionization Detection,J. Chromatogr. 530, 424–431.

    Google Scholar 

  24. Shantha, N.C. (1992) Thin-Layer Chromatography-Flame Ionization Detection Iatroscan System,J. Chromatogr. 624, 21–35.

    Article  PubMed  CAS  Google Scholar 

  25. Sebedio, J.-L., and Juaneda, P. (1991) Quantitative Lipid Analyses Using the New Iatroscan TLC-FID System,J. Planar Chromatogr. 4, 35–41.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Peyrou, G., Rakotondrazafy, V., Mouloungui, Z. et al. Separation and quantitation of mono-, di-, and triglycerides and free oleic acid using thin-layer chromatography with flame-ionization detection. Lipids 31, 27–32 (1996). https://doi.org/10.1007/BF02522406

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02522406

Keywords

Navigation