Bulletin Gæodésique

, Volume 60, Issue 4, pp 339–343 | Cite as

Constant part of the Earth tides in the Earth figure theory

  • M. I. Yurkina
  • Z. Šimon
  • A. Zeman


It is recommended not to reduce measured geodetic values by the constant part of the tidal influence. For this case there is shown an exact solution of the tasks of the theory of the Earth figure, which leads to introducing simple corrections of the gravity anomalies but only for the solution of the boundary value problem.


Gravity Field Gravity Anomaly Normal Gravity Earth Tide Constant Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. EKMAN (1979): The Stationary Effect of Moon and Sun upon the Gravity of the Earth, and Some Aspects of the Definition of Gravity. Rep. 5, Geodet. Inst., Uppsala University.Google Scholar
  2. M. EKMAN (1981): On the Definition of Gravity. Bull. Géod., 55, p. 167.CrossRefGoogle Scholar
  3. E. GRAFAREND, F. SANSÒ (1984): The Multibody Space-Time Geodetic Boundary Value Problem and the Honkasalo Term. Geophys. J.R. Astr. Soc., 78, p. 255.CrossRefGoogle Scholar
  4. E. GROTEN (1980): A Remark on M. Heikkinen’s Paper: “On the Honkasalo Term in Tidal Corrections to Gravimetric Observations”. Bull. Géod., 54, p. 221.CrossRefGoogle Scholar
  5. E. GROTEN (1981): Reply to M. Ekman’s: “On the Definition of Gravity”. Bull. Géod., 55, p. 169.CrossRefGoogle Scholar
  6. M. HEIKKINEN (1979): On the Honkasalo Term in Tidal Corrections to Gravimetric Observations. Bull. Géod., 53, p. 239.CrossRefGoogle Scholar
  7. W.A. HEISKANEN, H. MORITZ (1967): Physical Geodesy. W.H. Freeman and Company, San Francisco and London.Google Scholar
  8. T. HONKASALO (1964): On the Tidal Gravity Correction. Boll. geof. teor. ed appl., VI, p. 34.Google Scholar
  9. IAG Resolution No. 16, Hamburg 1983, Bulletin Géodésique, 58, 1984, p. 321.Google Scholar
  10. P. MELCHIOR (1983): The Tides of the Planet Earth, 2nd Edition. Pergamon Press, Oxford.Google Scholar
  11. M.S. MOLODENSKII, V.F. EREMEEV, and M.I. YURKINA (1960): Methods for Study of the External Gravitational Field and Figure of the Earth (in russian). Trudy CNIIGAiK, vyp. 131, Izd. geod. literatury, Moscow.Google Scholar
  12. R.H. RAPP: Tidal Gravity Computations Based on Recommendations of the Standard Earth Tide Committee. Marées Terrestres, Bulletin d’lnformations, No. 89, 15 April 1983, Observatoire Royal de Belgique, Bruxelles.Google Scholar
  13. Z. ŠIMON (1980): A Comment on Honkasalo’s Correction. Studia geoph, et geod., 24, p. 92.CrossRefGoogle Scholar
  14. Z. ŠIMON, A. ZEMAN (1983): On the Constant Part of the Earth Tides. Proceed. Intern. Symp. “Figure of the Earth, the Moon and Other Planets”, Prague 1982, Research Inst. of Geodesy, Topography and Cartography, Prague.Google Scholar
  15. M.I. YURKINA (1984): Precising of the Earth Figure Theory Formulas Due to Tidal Influences (in russian). Geod. i kart., Nov.12, p. 8.Google Scholar
  16. A. ZEMAN (1979): Tidal Corrections of Levelling. IUGG XVll Plenary Meeting (Canberra 1979). Edice VùGTK, Ř. 8, Zdiby.Google Scholar
  17. A. ZEMAN (1981): Problem of Honkasalo Correction in the Theory of Heights (in czech). In: Problémy současné gravimetrie, díl I., Brno, p. 81.Google Scholar

Copyright information

© Bureau Central de L’Association Internationale de Géodésie 1986

Authors and Affiliations

  • M. I. Yurkina
    • 1
  • Z. Šimon
    • 2
  • A. Zeman
    • 2
  1. 1.Central Research Institute of Geodesy Aerial Photography and CartographyMoscowUSSR
  2. 2.Research Institute of Geodesy, Topography and CartographyZdiby 98Czechoslovakia

Personalised recommendations