Advances in Computational Mathematics

, Volume 2, Issue 4, pp 461–477 | Cite as

A general extrapolation procedure revisited

  • C. Brezinski
  • M. Redivo-Zaglia


TheE-algorithm is the most general extrapolation algorithm actually known. The aim of this paper is to provide a new approach to this algorithm. This approach gives a deeper insight into theE-algorithm, and allows one to obtain new properties and to relate it to other algorithms. Some extensions of the procedure are discussed.


Convergence acceleration extrapolation 

AMS(MOS) subject classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. Beckermann, A connection between theE-algorithm and the epsilon-algorithm, in:Numerical and Applied Mathematics, ed. C. Brezinski (Baltzer, Basel, 1989) pp. 443–446.Google Scholar
  2. [2]
    C. Brezinski, A general extrapolation algorithm, Numer. Math. 35(1980)175–187.MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    C. Brezinski, The Mühlbach-Neville-Aitken algorithm and some extensions, BIT 20(1980) 444–451.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    C. Brezinski, A survey of iterative extrapolation by theE-algorithm, Det Kong. Norske Vid. Selsk. skr. 2(1989)1–26.MATHGoogle Scholar
  5. [5]
    C. Brezinski, Algebraic properties of theE-transformation, in:Numerical Analysis and Mathematical Modelling, Banach Center Publications, Vol. 24 (PWN, Warsaw, 1990) pp. 85–90.Google Scholar
  6. [6]
    C. Brezinski and A.C. Matos, A derivation of extrapolation algorithms based on error estimates, J. Comput. Appl. Math., to appear.Google Scholar
  7. [7]
    C. Brezinski and M. Redivo-Zaglia,Extrapolation Methods. Theory and Practice (North-Holland, Amsterdam, 1991).MATHGoogle Scholar
  8. [8]
    C. Brezinski and A. Salam, Matrix and vector sequence transformations revisited, submitted.Google Scholar
  9. [9]
    C. Brezinski and G. Walz, Sequences of transformations and triangular recursion schemes with applications in numerical analysis, J. Comput. Appl. Math. 34(1991)361–383.MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    C. Carstensen, On a general epsilon algorithm, in:Numerical and Applied Mathematics, ed. C. Brezinski (Baltzer, Basel, 1989) pp. 437–441.Google Scholar
  11. [11]
    W.F. Ford and A. Sidi, An algorithm for a generalization of the Richardson extrapolation process, SIAM J. Numer. Anal. 24(1987)1212–1232.MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    T. Håvie, Generalized Neville type extrapolation schemes, BIT 19(1979)204–213.MATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    A.C. Matos and M. Prévost, Acceleration property of theE-algorithm, Numer. Algor. 2(1992) 393–408.MATHCrossRefGoogle Scholar
  14. [14]
    G. Meinardus and G.D. Taylor, Lower estimates for the error of best uniform approximation, J. Approx. Theory 16(1976)150–161.MATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    G. Mühlbach, A recurrence formula for generalized divided differences and some applications, J. Approx. Theory 9(1973)165–172.MATHCrossRefGoogle Scholar
  16. [16]
    G. Mühlbach, Newton- und Hermite-Interpolation mit Čebyšev-Systemen, Z. Angew. Math. Mech. 54(1974)541–550.MATHMathSciNetGoogle Scholar
  17. [17]
    G. Mühlbach, Neville-Aitken algorithms for interpolation by functions of Čebyšev-systems in the sense of Newton and in a generalized sense of Hermite, in:Theory of Approximation, with Applications, ed. A.G. Law and B.N. Sahney(Academic Press, New York, 1967) pp. 200–212.Google Scholar
  18. [18]
    G. Mühlbach, The general Neville-Aitken algorithm and some applications, Numer. Math. 31(1978)97–110.MATHMathSciNetCrossRefGoogle Scholar
  19. [19]
    G. Mühlbach, The general recurrence relation for divided differences and the general Newton-interpolation-algorithm with applications to trigonometric interpolation, Numer. Math. 32(1979) 393–408.MATHMathSciNetCrossRefGoogle Scholar
  20. [20]
    M. Prévost, Acceleration property for theE-algorithm and an application to the summation of series, Adv. Comput. Math. 2(1994)319–341.MATHMathSciNetGoogle Scholar
  21. [21]
    C. Schneider, Vereinfachte Rekursionen zur Richardson-Extrapolation in Spezialfällen, Numer. Math. 24(1975)177–184.MATHMathSciNetCrossRefGoogle Scholar
  22. [22]
    D. Shanks, Non linear transformations of divergent and slowly convergent sequences, J. Math. Phys. 34(1951)1–42.MathSciNetGoogle Scholar
  23. [23]
    A. Sidi, An algorithm for a special case of a generalization of the Richardson extrapolation process, Numer. Math. 38(1982)299–307.MATHMathSciNetCrossRefGoogle Scholar
  24. [24]
    A. Sidi, On a generalization of the Richardson extrapolation process, Numer. Math. 57(1990) 365–377.MATHMathSciNetCrossRefGoogle Scholar
  25. [25]
    E.J. Weniger, Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series, Comput. Phys. Rep. 10(1989)189–371.CrossRefGoogle Scholar
  26. [26]
    P. Wynn, On a device for computing theS n) transformation, MTAC 10(1956)91–96.MATHMathSciNetGoogle Scholar
  27. [27]
    P. Wynn, Confluent forms of certain nonlinear algorithms. Arch. Math. 11(1960)223–234.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© J. C. Baltzer AG, Science Publishers 1994

Authors and Affiliations

  • C. Brezinski
    • 1
  • M. Redivo-Zaglia
    • 2
  1. 1.Laboratoire d'Analyse Numérique et d'Optimisation, UFR IEEA-M3Université des Sciences et Technologies de LilleVilleneuve d'Ascq CedexFrance
  2. 2.Dipartimento di Elettronica e InformaticaUniversità degli Studi di PadovaPadovaItaly

Personalised recommendations