Bulletin Géodésique

, Volume 51, Issue 1, pp 63–71 | Cite as

Geodetic elasticity theory its matter and an application

  • Kai Borre


The geodetic elasticity theory is broadly outlined. It relies heavily on the structure matrix which mainly is defined as weight per area unit.

An actual computation of the structure matrix has been performed for distance measurements in the Danish fundamental network. The mean value of the matrix unveils a fairly good isotropy in the network while the homogeneity evidently depends on the area of the single triangles.


Normal Equation Structure Matrix Adjustment Problem Geodetic Network Classical Elasticity Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J.E. ALBERDA, Planning and Optimisation of Networks: Some General Considerations, paper presented at Symposium on Computational Methods in Geometrical Geodesy, Oxford, Sept. 2–8, 1973.Google Scholar
  2. J.E. ALBERDA, Aspects of Large Leveling Nets, The Canadian Surveyor, 28, 643–657, 1974.Google Scholar
  3. W. BAARDA, S-Transformations and Criterion Matrices, Netherlands Geodetic Commission, Publications on Geodesy, New Series Vol. 5, No. 1, 1973.Google Scholar
  4. N. BARTELME, P. MEISSL, Strength Analysis of Distance Networks, Report No. 15 of the Geodetic Institutes, Technical University Graz, 1974.Google Scholar
  5. K. BORRE, T. KRARUP, On the Spectrum of Geodetic Networks, paper presented at Symposium on Computational Methods in Geometrical Geodesy, Oxford, Sept. 2–8, 1973.Google Scholar
  6. K. BORRE, T. KRARUP, Foundation of a Theory of Elasticity for Geodetic Networks, paper presented at 7. nordiske geodaetmøde, Købanhavn, May 6–10, 1974.Google Scholar
  7. K. BORRE, P. MEISSL. Strength Analysis of Leveling—Type Networks, Meddelelse No. 50, Geodaetisk lnstitut, 1974.Google Scholar
  8. H.M. DUFOUR, Générations et Applications des Tableaux de Variances des Systèmes de Moindres Carrés, Bull. Géod., 98. 309–339, 1970.CrossRefGoogle Scholar
  9. K. GERKE, H. PELZER, Netzverdichtung oder Netzaufbau aus Funktionen gemessener Grössen, AVN, 77. 309–316, 1970.Google Scholar
  10. E.W. GRAFAREND, Optimisation of Geodetic Networks, Bollettino di Geodesia e Scienze Affini, XXXIII, 351–406, 1974.Google Scholar
  11. F.R. HELMERT, Die Ausgleichungsrechnung nach der Methode der kleinsten Quadrate, Leipzig-Berlin, 1924.Google Scholar
  12. C. LANCZOS, Linear Differential Operators, D. Van Nostrand, London, 1961.Google Scholar
  13. P. MEISSL, Über die Fehlerfortpflanzung in gewissen regelmässigen flächig ausgebreiteten Nivellementnetzen, ZfV, 95, 103–109, 1970.Google Scholar
  14. P. MEISSL, On the Random Error Propagation in Relatively Large Networks, Studia geoph. at geod., 17, 7–21, 1973.CrossRefGoogle Scholar
  15. P. MEISSL, The Strength of Continental Terrestrial Networks. The Canadian Surveyor, 28, 582–589, 1974.Google Scholar
  16. H. PELZER, Verteilung von Streckenmessungen in trigonometrischen Netzen, AVN, 74, 273–280, 1967.Google Scholar

Copyright information

© Bureau Central de L’Association Internationale de Géodésie 1977

Authors and Affiliations

  • Kai Borre
    • 1
  1. 1.Aalborg University CentreAalborgFinland

Personalised recommendations