Skip to main content
Log in

Satellite emission radio interferometric earth surveying series—GPS geodetic system

  • Published:
Bulletin géodésique Aims and scope Submit manuscript

Abstract

The satellites of the Global Positioning System (GPS) offer an important new geodetic resource making possible a highly accurate portable radio geodetic system. A concept called SERIES (Satellite Emission Radio Interferometric Earth Surveying) makes use of GPS radio transmissions without any satellite modifications. By employing the technique of very long baseline interferometry (VLBI) and its calibration methods, 0.5 to 3 cm three dimensional baseline accuracy can be achieved over distances of 2 to 200 km respectively, with only 2 hours of on-site data acquisition. The use of quasar referenced ARIES Mobile VLBI to establish a sparse fundamental control grid will provide a basis for making SERIES GPS measurements traceable to the time-invariant quasar directions. Using four SERIES stations deployed at previously established ARIES sites, allows the GPS satellite apparent positions to be determined. These apparent positions then serve as calibrations for other SERIES stations at unknown locations to determine their positions in a manner traceable to the quasars. Because this proposed radio interferometric configuration accomplishes its signal detection by cross-correlation, there is no dependence upon knowledge of the GPS transmitted waveforms which might be encrypted. Since GPS radio signal strengths are 105 stronger than quasar signals, a great reduction in telecommunications sophistication is possible which will result in an order of magnitude less cost for a SERIES GPS station compared to a quasar based mobile VLBI system. The virtually all-weather capability of SERIES offers cost-effective geodetic monitoring with applications to crustal dynamics and earthquake research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. BARE, B.G. CLARK, K.I. KELLERMAN, M. COHEN, and D.J. JAUNCEY: “Interferometer Experiments with independent Local Oscillators”, Science, 157, 187, 1967.

    Article  Google Scholar 

  2. A.G. BREJCHA, L.H. KEELER: “The Seasat—A Synthetic Aperture Radar Antenna”. Proceedings of the Synthetic Aperture Radio Radar Technology Conference, Las Cruces, New Mexico, March 8–10, 1978.

  3. N.W. BROTEN, T.H. LEGG, J.L. LOCKE, C.W. McLEISH, R.S. RICHARDS, R.M. CHISHOLM, H.P. GUSH, J.L. YEN, and J.A. GALT: “Long Baseline Interferometry: A New Technique”, Science, 156, 1592, 1967.

    Article  Google Scholar 

  4. C.C. CHAO: “Tracking System Analytic Calibration Activities for the Mariner Mars 1971 Mission”, Tech. Rep. 32-1587, p. 61, Jet Propulsion Laboratory, Pasadena, California, 1974.

    Google Scholar 

  5. E.S. CLAFLIN, S.C. Wu and G.M. RESCH: “Microwave Radiometer Measurement of Water Vapor Path Delay: Data Reduction Techniques”, DSN Progress Report 42–48, Jet Propulsion Laboratory, Pasadena, 1978.

    Google Scholar 

  6. B.G. CLARK: “The NRAO Tape Recorder Interferometer System”, Proc. IEEE, 61, 1242–1248, 1973.

    Google Scholar 

  7. J.F. FANSELOW, J.B. THOMAS, E.J. COHEN, P.F. MacDORAN, W.G. MELBOURNE, B.D. MULHALL, G.H. PURCELL, D.H. ROGSTAD, L.J. SKJERVE, and D.J. SPITZMESSER. “Determination of UT1 and Polar Motion by the Deep Space Network Using Very Long Baseline Interferometry”, IAU Symposium No. 82, Rotation of the Earth, Cadiz, Spain, 1978.

    Google Scholar 

  8. W.A. HEISKANEN, and H. MORITZ: “Physical Geodesy”, 364 pp. W.H. Freeman, San Francisco, California, 1967.

    Google Scholar 

  9. Col. D.W. HENDERSON, USAF and Captain G.D. SMELTZER, USAF, NAVSTAR, Air Force Magazine, pp. 80–83, July 1978.

  10. H.F. HINTEREGGER, I.I. SHAPIRO, D.S. ROBERTSON, C.A. KNIGHT, R.A. ERGAS, A.R. WHITNEY, A.E.E. ROGERS, J.M. MORAN, T.A. CLARK, and B.F. BURKE: “Precision Geodesy Via Radio Interferometry”, Science, 178, 396–398, 1972.

    Article  Google Scholar 

  11. J.D. KRAUS: “Radio Astronomy”, p. 213, McGraw Hill Book Co., San Francisco, California, 1966.

    Google Scholar 

  12. P.F. MacDORAN, A.E. NIELL, K.M. ONG, G.M. RESCH, D.D. MORABITO, E.S. CLAFLIN and T.G. LOCKHART: Radio Interferometric Geodetic Determinations of Tide Gage Relative Positions, EOS-Trans., AGU, 59, No. 12, p. 1053, 1978.

    Google Scholar 

  13. P.F. MacDORAN: “A System for Near Real-Time Crustal Deformation Monitoring”, Proceedings of the Eight Annual Precise Time and Time Internal (PTTI) Conference, December 1976.

  14. P.F. MacDORAN, J.B. THOMAS, K.M. ONG, H.F. FLIEGEL, and D.D. MORABITO: “Radio Interferometric Geodesy Using a Rubidium Frequency System”, Proceedings of the Seventh Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, December 1975.

  15. P.F. MacDORAN: “Radio Interferometry for International Study of the Earthquake Mechanism”, Acta Astrom., 1, 1427–1444, 1974.

    Article  Google Scholar 

  16. J.M. MORAN and H. PENFIELD: “Test and Evaluation of Water Vapor Radiometers and Determination of their Capacity to Measure Tropospheric Propagation Path Length”, p. 33, Smithsonian Astrophysical Observatory, Cambridge, Massachusetts, June 1976.

    Google Scholar 

  17. A.E. NIELL, K.M. ONG, P.F. MacDORAN, G.M. RESCH, D.W. FITE, L.J. SKJERVE, D.J. SPITZMESSER, D.D. MORABITO, L. TANIDA, E.S. CLAFLIN, B.B. JOHNSON, M.G. NEWSTED, A. BANISCH, and J.F. DRACUP: “Comparison of a Radio Interferometric Differential Baseline Measurement with Conventional Geodesy”, Tectonophysics, 52, p. 532, 1979.

    Article  Google Scholar 

  18. K.M. ONG, P.F. MacDORAN, and D.W. CURKENDALL: “Geodetic and Orbital Parameter Estimation from Interferometric Observations of the GPS Satellites”, EOS-Trans., AGU, 59, No. 12, p. 1052, 1978.

    Google Scholar 

  19. K.M. ONG, P.F. MacDORAN, J.B. THOMAS, H.F. FLIEGEL, L.J. SKJERVE, D.J. SPITZMESSER, P.D. BATELAAN, S.R. PAINE, and M.G. NEWSTED: “A Demonstration of a Transpor-table Radio Interferometric System with 3-cm Accuracy on a 307-m Baseline”, J. Geophys., Res., 81, pp. 3587–3593, 1976.

    Article  Google Scholar 

  20. A.E.E. ROGERS, C.A. KNIGHT, H.F. HINTEREGGER, A.R. WHITNEY, C.C. COUNSELMAN, I.I. SHAPIRO, S.A. GOUREVICTH, and T.A. CLARK: “Geodesy by Radio Interferometry: Determination of a 1.24 km Baseline Vector with ≈5 mm Repeatability”, J. Geophys. Res., 83, No. 81, 1978.

  21. A.E.E. ROGERS: “A Receiver Phase and Group Delay Calibrator for Use in Very Long Baseline Interferometry”, Haystack Observatory Technical Note 1975-6.

  22. A.E.E. ROGERS: “Very Long Baseline Interferometry with Large Effective Bandwidth for Phase Delay Measurements”, Radio Science, 5(10), 1239, 1970.

    Article  Google Scholar 

  23. M. RYLE, and B. ELSMORE: “Astrometry with the 5-km Radio Telescope”, Mon. Notic. Roy. Astron. Soc., 164, 223, 1973.

    Google Scholar 

  24. L.W. SCHAPER, D.H. STAELIN, and J.W. WATERS: The Estimation of Tropospheric Electrical Path Length by Microwave Radiometry, Proc. IEEE58, 2, pp. 272–273, 1970.

    Google Scholar 

  25. I.I. SHAPIRO, and C.A. KNIGHT: “Geophysical Applications of Long Baseline Radio Interferometry”, in Earthquake Displacement Fields and the Rotation of the Earth, edited by L. Mansinha, D.E. Smylie, and A.E. Beck, p. 284, Springer, New York, 1970.

    Google Scholar 

  26. J.B. THOMAS: “The Tone Generator and Phase Calibration in VLBI Measurements, DSN Progress Report 42-44, p. 63, 1978.

  27. J.B. THOMAS, J.L. FANSELOW, P.F. MacDORAN, L.J. SKJERVE, D.J. SPITZMESSER, and H.F. FLIEGEL: “A Demonstration of an Independent Station Radio Interferometry System with 4-cm Precision on a 16-km Baseline”, J. Geophys. Res., 81 995–1005, 1976.

    Article  Google Scholar 

  28. J.B. THOMAS: “An Analysis of Long Baseline Radio Interferometry”, The Deep Space Network Progress Report, Tech. Rep. 32-1526, Vol. 7, p. 37, Jet Propulsion Laboratory, Pasadena, California, 1972a.

    Google Scholar 

  29. J.B. THOMAS: “An Analysis of Long Baseline Radio Interferometry, 2”, The Deep Space Network Progress Report, Tech. Rep. 32-1526, vol. 8, p. 29, Jet Propulsion Laboratory, Pasadena, California, 1972b.

    Google Scholar 

  30. J.B. THOMAS: “An Analysis of Long Baseline Radio Interferometry, 3”, The Deep Space Network Progress Report, Tech. Rep. 32-1526, vol. 16, p. 47, Jet Propulsion Laboratory, Pasadena, California, 1973.

    Google Scholar 

  31. J.J. WHITCOMB: “New Vertical Geodesy”, J. Geophys. Res. 81, 26, p. 4937, 1976.

    Article  Google Scholar 

  32. F.B. WINN, S.C. Wu, G.M. RESCH, C.C. CHAO, and O.H. von ROOS: “Atmospheric Water Vapor Calibration for Radio Geodetic Systems”, DSN Progress Report 42-32, p. 38–50 (15 April 1976).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacDoran, P.F. Satellite emission radio interferometric earth surveying series—GPS geodetic system. Bull. Geodesique 53, 117–138 (1979). https://doi.org/10.1007/BF02521085

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02521085

Keywords

Navigation