Advertisement

Bulletin géodésique

, Volume 57, Issue 1–4, pp 354–364 | Cite as

Modeling of the apparent height variations of a tranet station

  • V. Dehant
  • P. Paquet
Article

Abstract

The time evolution of the apparent variation of the height of a Doppler station is modeled. Several main components with periodicities around 11.75 years, one year, six months, 122 and 127 days are identified. The amplitudes, phases and associated errors are estimated respectively to be of the order of (30 cm±5, 1.7 rad±0.2), (47 cm±4, 5.0 rad±0.1), (14 cm±3.5, 4.4 rad±0.2), (10 cm±2.5, 5.4 rad±0.3), (10 cm±2.5, 1.7 rad±0.3).

The physical origin of the height variations is mainly related to the ionospheric refraction which perturbs the radio signals.

Keywords

Solar Activity Periodic Component Atmospheric Angular Momentum Precise Ephemeris Maximum Entropy Spectral Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.B. BLACKMAN and J.W. TUCKEY, 1958: The Measurement of Power Spectra, Dover, New-York.Google Scholar
  2. T. BORZA, M. VARGA, 1982: An attempt for explanation of the four month period in Doppler position fix data. Paper submitted to International Scientific Conference of Section 6, INTERCOSMOS, SUZDAL, USSR.Google Scholar
  3. J.P. BURG, 1967: Maximum Entropy spectral analysis. Paper presented at the 37th meeting, Soc. Explor. Geophys., Oklahoma City, Okla.Google Scholar
  4. J.P. BURG, 1968: A new analysis technique for series data. Paper presented at NATO Advanced Study Institute on Signal Processing. Enschede. Netherlands.Google Scholar
  5. J.R. CLYNCH and B.A. RENFRO, 1982: Evaluation of ionospheric range error model, Proceed. Third Int. Geod. Symp. on Satellite Doppler Positioning, Las Cruces, Physical Science Lab., New Mexico State Univ.Google Scholar
  6. D. DJUROVIC, 1983: Common short period variations of geomagnetic field, the atmospheric angular momentum and the Earth Rotation. Accepted for publication in Astronomy and Astrophysics.Google Scholar
  7. H.L. GRAY, A.G. HOUSTON, F.W. MORGAN, 1978: On G spectral estimation in Applied Time Series Analysis. Findley Academic Press.Google Scholar
  8. P. MELCHIOR, 1978: The Tides of the Planet Earth. Pergamon Press.Google Scholar
  9. P. PAQUET, V. DEHANT, 1982: The coordinates evolution of a TRANET station over 9 years. Proceed. Third Int. Geod. Symp. on Satellite Doppler Positioning, Las Cruces, Physical Science Lab., New Mexico State Univ.Google Scholar
  10. P. PESTIAUX, A. BERGER, 1982: Numerical methods in the search for periodicities. Contribution 34 of the Institut d'Astronomie et de Géophysique G. Lemaître. U.C.L., Louvain-la-Neuve, Belgium.Google Scholar
  11. W. SCHLÜTER, G. BLENSKI, K. HERZBERGER, W. MÜLLER, R. STOGER, 1982: Results from permanent Doppler observations at WETTZELL using broadcast and precise ephemeris. Proceed. Third Int. Geod. Symp. on Satellite Doppler Positioning, Las Cruces, Physical Science Lab., New Mexico State Univ.Google Scholar
  12. W. STRANGE, L. HOTHEM, M. WHITE, 1982: Time variability of Doppler results at Ukiah latitude observatory and other stations. Proceed. Third Int. Geod. Symp. on Satellite Doppler Positioning, Las Cruces, Physical Science Lab., New Mexico State Univ.Google Scholar
  13. T.J. ULRYCH, 1972: Maximum Entropy Power Spectrum of Troncated sinus aids. Journal of Geophysical Research. Vol. 77, no 8, 1396–1400.CrossRefGoogle Scholar
  14. J. USANDIVARAS, P. PAQUET, R. VERBEIREN, 1976: An ORB Doppler program analysis and its application to european data, Satellite Doppler positioning, Proc. Int. Geod. Symp., Physical Science Lab., New Mexico State Univ.Google Scholar
  15. J. VONDRAK, 1969: A contribution to the problem of smoothing observational data. Bulletin of the Astronomical Institutes of Czechoslovakia, Vol. 20, No 6.Google Scholar
  16. H. WOLF, 1968: Ausgleic hungsrechnung nach der Methode der kleinsten Quadrate. Dümmeer, Bonn.Google Scholar

Copyright information

© Bureau Central de L'Association Internationale de Géodésie 1983

Authors and Affiliations

  • V. Dehant
    • 1
  • P. Paquet
    • 2
  1. 1.Université Catholique de Louvain (FNRS)Louvain la NeuveBelgium
  2. 2.Observatoire Royal de BelgiqueBruxellesBelgium

Personalised recommendations