Skip to main content
Log in

Stochastic estimation of tropospheric path delays in global positioning system geodetic measurements

  • Published:
Bulletin géodésique Aims and scope Submit manuscript

Abstract

Water vapor radiometric (WVR) and surface meteorological (SM) measurements taken during three Global Positioning System (GPS) geodetic experiments are used to calculate process noise levels for random walk and first-order Gauss-Markov temporal models of tropospheric path delays. Entire wet and combined wet and dry zenith delays at each network site then are estimated simultaneously with the geodetic parameters without prior calibration. The path delays and corresponding baseline estimates are compared to those obtained with calibrated data and stochastic residual delays. In this manner, the marginal utility of a priori tropospheric calibration is assessed given the ability to estimate the path delays directly using only theGPS data. Estimation of total zenith path delays with appropriate random walk or Gauss-Markov models yields baseline repeatabilities of a few parts in 108. This level of geodetic precision, and accuracy as suggested by analyses on collocated baselines estimated independently by very long baseline interferometry, is comparable to or better than that obtained after path delay calibration usingWVR and/orSM measurements. Results suggest thatGPS data alone have sufficient strength to resolve centimeter-level zenith path delay fluctuations over periods of a few minutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J.B. ABSHIRE and C.S. GARDNER, 1985: Atmospheric refractivity corrections in satellite laser ranging,IEEE, Trans. Geosci. Remote Sensing, 23, pp. 414–425.

    Article  Google Scholar 

  • J.W. ARMSTRONG, and R.A. SRAMEK, 1982: Observations of tropospheric phase scintillations at 5 GHz on vertical paths,Radio Sci., 17, pp. 1579–1586.

    Article  Google Scholar 

  • J. ASKNE, and H. NORDIUS, 1987: Estimation of tropospheric delay for microwaves from surface weather data.Radio Science, 22, pp. 379–386.

    Article  Google Scholar 

  • B. BECKMAN, 1985: A water-vapor radiometer error model.IEEE Trans. Geosci. Remote Sens, GE-23, No. 4, pp. 474–478.

    Article  Google Scholar 

  • A.L. BERMAN, 1970: A new tropospheric range refraction model, inThe Deep Space Network, Space Programs Summary 37-65, II, pp. 140–153. Jet Propulsion Laboratory, Pasadena, CA.

    Google Scholar 

  • G.J. BIERMAN, 1977:Factorization Methods for Discrete Sequential Estimation, Academic Press, New York, NY, 241 p.

    Google Scholar 

  • G. BLEWITT, 1989: Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km,J. Geophys. Res., 94, pp. 10187–10203.

    Article  Google Scholar 

  • G.H. BORN, D.B. LAME, and J.M. MITCHELL, 1984a: Asurvey of oceanographic satellite altimetric missions,Marine Geodesy, 8, pp. 3–16.

    Article  Google Scholar 

  • G.H. BORN, C. WUNSCH, and C.A. YAMARONE, 1984b: TOPEX: Observing the oceans from space,EOS Trans. Am. Geophys. Union, 65, pp. 433–437.

    Google Scholar 

  • Y. BOCK, S.A. GOUREVITCH, C.C. COUNSELMAN III, R.W. KING, and R.I. ABBOT, 1986: Interferometric analysis of GPS phase observations,Manuscripta geodaetica, 11, pp. 282–288.

    Google Scholar 

  • C.C. CHAO, 1973: A new method to predict wet zenith range corrections from surface measurements, JPL Technical Report, 32-1256, pp. 33–41.

    Google Scholar 

  • C.C. CHAO, 1974: The troposphere calibration model for Mariner Mars 1971. JPL Technical Report, 32-1587, pp. 61–76.

    Google Scholar 

  • E.S. CLAFLIN, S.C. WU, and G.M. RESCH, 1978: Microwave radiometer measurement of water vapor path delay: Data reduction techniques.DSN Prog. Rep. 42-48, pp. 22–30, Jet Propulsion Laboratory, Pasadena, CA.

    Google Scholar 

  • C.C. COUNSELMAN III, and R.I. ABBOT, 1989: Method of resolving radio phase ambiguity in satellite orbit determination.Journ. Geophys. Res., 94, pp. 7058–7064.

    Article  Google Scholar 

  • R.B. CROW, F.R. BLETZACKER, R.J. NAJARIAN, G.H. PURCELL, Jr., J.I. STATMAN, and J.B. THOMAS, 1984: SERIES-X final engineering report. JPL Internal Document D-1476, Jet Propulsion Laboratory, Pasadena, CA, August.

    Google Scholar 

  • J.M. DAVIDSON, C.L. THORNTON, S.A. STEPHENS, G. BLEWITT, S.M. LICHTEN, O.J. SOVERS, P.M. KROGER, L.L. SKRUMEDA, J.S. BORDER, R.E. NEILAN, C.J. VEGOS, B.G. WILLIAMS, J.T. FREYMUELLER, and T.H. DIXON, 1987: The March 1985 High Precision Baseline Test of the JPL GPS-based geodetic system: A Final Report. JPL Publication 87-35. Jet Propulsion Laboratory, Pasadena, CA.

    Google Scholar 

  • J.L. DAVIS, T.A. HERRING, I.I. SHAPIRO, A.E.E. ROGERS, and G. ELGERED, 1985: Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimated baseline length.Radio Science, 20, pp. 1593–1607.

    Article  Google Scholar 

  • T.H. DIXON, D.M. TRALLI, J.M. DAVIDSON, and J.P. DAUPHIN, 1990a: Geodetic baselines across the Gulf of California (Mar de Cortes) using the Global Positioning System.AAPG Memoir on the Gulf and Peninsular Province of the Californias, in press.

  • T.H. DIXON, G.M. GONZALEZ, E. KATSIGRIS, and S.M. LICHTEN, 1990b: First epoch geodetic measurements with the Global Positioning System (GPS) across the northern Caribbean plate boundary.Journ. Geophys. Res., in press.

  • T.H. DIXON, and S. KORNREICH WOLF, 1990: Some tests of wet tropospheric calibration for the CASA UNO Global Positioning System experiment.Geophys. Res. Lett., 17, pp. 203–206.

    Article  Google Scholar 

  • A.H. DODSON, 1986: Refraction and propagation delays in space geodesy.Int. J. Remote Sensing, 7, pp. 515–524.

    Article  Google Scholar 

  • D. DONG, and Y. BOCK, 1989: GPS network analysis with phase ambiguity resolution applied to crustal deformation studies in California.J. Geophys. Res., 94, pp. 3949–3966.

    Article  Google Scholar 

  • A.F. DRAVSKIKH, and M.A. FINKELSTEIN, 1979: Tropospheric limitations in phase and frequency coordinate measurements in astronomy.Astrophys. Space Sci., 60, pp. 251–265.

    Article  Google Scholar 

  • G. ELGERED, J.L. DAVIS, T.A. HERRING, and I.I. SHAPIRO, 1990: Geodesy by radio interferometry: Water vapor radiometry for estimation of the wet delay.J. Geophys. Res., in press.

  • G. ELGERED, B. RONNAND, E. WINBERG, and J. ASKNE, 1985: Satellite-Earth range measurements. 1. Correction of the excess path length due to atmospheric water-vapor by ground-based microwave radiometry.Res. Respt. 147, Research Laboratory of Electronics and Onsala Space Observatory, Chalmers Univeristy of Technology, gothenburg, Sweden.

    Google Scholar 

  • F.E. FOWLE, 1912: The spectroscopic determination of aqueous vapor.Astrophys. J., 35, pp. 149–162.

    Article  Google Scholar 

  • B.L. GARY, S.J. KEIHM, and M.A. JANSSEN, 1985: Optimum strategies and performance for the remote sensing of path-delay using ground-based microwave radiometers.IEEE Trans. Geosci. Remote Sens., GE-23, 4, pp. 479–484.

    Article  Google Scholar 

  • W.B. GRANT, J.S. MARGOLIS, A.M. BROTHERS, and D.M. TRATT, 1987: CO2 DIAL lidar measurements of water vapor.Applied Optics, 26.

  • F.O. GUIRAUD, J. HOWARD, and D.C. HOGG, 1979: A dual-channel microwave radiometer for measurement of precipitable water vapor and liquid.IEEE Trans. Geosci. Electron., GE 17, pp. 129–136.

    Article  Google Scholar 

  • T.A. HERRING, 1986: Precision of Vertical Position Estimates From Very Long Baseline Interferometry.Journ. Geophys. Res.,91, pp. 9177–9182.

    Article  Google Scholar 

  • T.A. HERRING, J.L. DAVIS, and I.I. SHAPIRO, 1990: Geodesy by radio interferometry: The application of Kalman filtering to the analysis of VLBI data.J. Geophys. Res., in press.

  • D.J. HENSON, E.A. COLLIER, and K.R. SCHNEIDER, 1985: Geodetic applications of the Texas instruments TI-4100 GPS navigator.Proceedings of the First International Symposium on Precise Positioning with the Global Positioning System. ed. C. Goad, NOAA, Rockville, MD, pp. 191–200.

    Google Scholar 

  • D.C. HOGG, F.O. GUIRAUD, and W.B. SWEEZY, 1981: The short term temporal spectrum of precipitable water vapor.Science, 213, pp. 1112–1113.

    Article  Google Scholar 

  • H.S. HOPFIELD, 1971: Tropospheric range error at the zenith. Johns Hopkins University, Applied Physics Laboratory Report, June.

  • W.J. HUMPHREYS, 1940:Physics of the Air. 3rd ed., McGraw-Hill, New York.

    Google Scholar 

  • M.A. JANSSEN, 1985: A new instrument for the determination of radio path delay due to atmospheric water vapor.IEEE Trans. Geosci. Remote Sens., GE-23, 4, pp. 485–490.

    Article  Google Scholar 

  • R.E. KALMAN, 1960: A new approach to linear filtering and prediction problems.ASME Trans., 32D, pp. 35–50.

    Google Scholar 

  • J.N. KELLOGG, T.H. DIXON, and R.E. NEILAN, 1989: Central and South America GPS geodesy— CASA,EOS, Trans. Am. Geophys. Union, 70, pp. 649–656.

    Article  Google Scholar 

  • A.A. KHATIB, and W.B. GRANT, 1988: Remote sensing of tropospheric water vapor for index-of-refraction determination.JPL Tech. Memorandum, D-5898, Jet Propulsion Laboratory, Pasadena, CA, 91109.

    Google Scholar 

  • P.M. KROGER, J.M. DAVIDSON, and E.C. GARDNER, 1986: Mobile very long baseline inter-ferometry and global positioning system measurement of vertical crustal motion.J. Geophys. Res., 91, pp. 9169–9176.

    Article  Google Scholar 

  • R. LANDAU, 1982: A portable water-vapor monitor for day or night use.Pubs. Astr. Soc. Pacific, 94, pp. 600–604.

    Article  Google Scholar 

  • G.E. LANYI, 1984: Tropospheric delay effects in radio interferometry. Telecommunications and Data Acquisition Prog. Rept. 42-78, pp. 153–159, Jet Propulsion Laboratory, Pasadena, California, April–June.

    Google Scholar 

  • S.M. LICHTEN, and W.I. BERTIGER, 1989: Demonstration of sub-meter GPS orbit determination and 1.5 parts in 108 three-dimensional baseline accuracy.Bull. Géodésique, 63, pp. 167–189.

    Article  Google Scholar 

  • S.M. LICHTEN, W.I. BERTIGER, and U.J. LINDQWISTER, 1989: The effect of fiducial network strategy on high-accuracy GPS orbit and baseline determination.Proc. of Fifth International Geodetic Symposium on Satellite Positioning, Las Cruces, New Mexico, March 13–17.

  • S.M. LICHTEN, and J.S. BORDER, 1987: Strategies for high precision Global Positioning System orbit determination.J. Geophys. Res., 92, pp. 12751–12762.

    Article  Google Scholar 

  • J.W. MARINI, 1972: Correction of satellite tracking data for an arbitrary tropospheric profile.Radio Sci., 7, pp. 223–231.

    Article  Google Scholar 

  • S.H. MELFI, and D. WHITEMAN, 1985: Observation of lower-atmospheric moisture structure and its evolution using a Raman lidar.Bull. Am. Meteor. Soc., 68, pp. 1288–1292.

    Article  Google Scholar 

  • F.M. MONALDO, 1989: The effects of atmospheric water vapor on the location of ocean features by the GEOSAT altimeter. Johns Hopkins APL Technical Digest, 10, pp. 386–391.

    Google Scholar 

  • E.E. REBER, and J.R. SWOPE, 1972: On the correlation of the total precipitable water in a vertical column and absolute humidity.J. Appl. Meteorology, 11, pp. 1322–1325.

    Article  Google Scholar 

  • C.H. REITAN, 1963: Surface dew point and water vapor aloft.J. Appl. Meteorol., 2, pp. 776–779.

    Article  Google Scholar 

  • G.M. RESCH, M.C. CHAVEZ, N.I. YAMANE, 1982. Description and overview of an instrument designed to measure line-of-sight delay due to water vapor.TDA Prog. Rept. 42-72, pp. 1–19, Jet Propulsion Laboratory, CA.

    Google Scholar 

  • G.M. RESCH, 1983: Inversion algorithms for water vapor radiometers operating at 20.7 and 31.4 GHz.TDA Progress Report 42-76, Jet Propulsion Laboratory, Pasadena, CA, p. 91109.

    Google Scholar 

  • G.M. RESCH, M.C. CHAVEZ, N.I. YAMANE, K.M. BARBIER, and R.C. CHANDLEE, 1985: Water vapor radiometry research and development phase final report. Publication 85-14, Jet Propulsion Laboratory, Pasadena, CA, April 1.

    Google Scholar 

  • S.E. ROBINSON, 1988: The profile algorithm for microwave delay estimation from water vapor radiometer data.Radio Science, 23, pp. 401–408.

    Article  Google Scholar 

  • J. SAASTAMOINEN, 1972: Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites, inThe use of Artificial Satellites for Geodesy, Geophys. Monogr., 15, AGU, Washington, D.C..

    Google Scholar 

  • E.K. SMITH Jr., and S. WEINTRAUB, 1953: The constants in the equation for atmospheric refractive index at radio frequencies.Proc., IRE, 41, pp. 1035–1057.

    Article  Google Scholar 

  • W.L. SMITH, 1966: Notes on the relationship between total precipitable water and surface dew point.J. Appl. Meteorol., 5, pp. 726–727.

    Article  Google Scholar 

  • O.J. SOVERS, and J.S. BORDER, 1987: Observation model and parameter partials for the JPL geodetic GPS modeling software “GPSOMC”, JPL Publ. 87-21.

  • J.J. SPILKER, 1978: GPS signal structure and performance characteristics.Journ. Inst. Navigation, 25, pp. 121–146.

    Google Scholar 

  • B.D. TAPLEY, J.B. LUNDBERG, and G.H. BORN, 1982: The SEASAT altimeter wet tropospheric range correction.J. Geophys. Res., 87, pp. 3213–3220.

    Article  Google Scholar 

  • M.C. THOMPSON, L.E. WOOD, H.B. JANES, and D. SMITH, 1975: Phase and amplitude scintillations in the 10 to 40 GHz band.IEEE, Trans. Antennas Propag., AP-23, pp. 792–797.

    Article  Google Scholar 

  • C.L. THORNTON, and G.J. BIERMAN, 1980:UDU T covariance factorization for Kalman filtering, inControl and Dynamic Systems, Advances in Theory and Application. Ed. C.T. Leondes, Academic Press, 16, pp. 177–248.

  • C. TOMASI, 1977: Precipitable water vapor in atmospheres characterized by temperature inversions.J. Appl. Meteorol., 16, pp. 237–243.

    Article  Google Scholar 

  • C.R. TOMASI, R. GUZZI, and O. VITTORE, 1974: A search for thee-effect in the atmospheric water vapor continuum.J. Atmos. Sci., 31, pp. 255–260.

    Article  Google Scholar 

  • D.M. TRALLI, and T.H. DIXON, 1988: A few parts in 108 geodetic baseline repeatability in the Gulf of California using the Global Positioning System.Geophys. Res. Lett., 15, pp. 353–356.

    Article  Google Scholar 

  • D.M. TRALLI, T.H. DIXON, and S.A. STEPHENS, 1988: The effect of wet tropospheric path delays on estimation of geodetic baselines in the Gulf of California using the Global Positioning System.J. Geophys. Res., 93, pp. 6545–6557.

    Article  Google Scholar 

  • D.M. TRALLI, S.M. LICHTEN, and T.A. HERRING, 1990: Comparison of Kalman filter estimates of tropospheric path delays using the Global Positioning System and very long baseline interferometry (submitted toRadio Sci.).

  • R.N. TREUHAFT, and G.E. LANYI, 1987: The effects of the dynamic wet troposphere on radio interferometric measurements.Radio Sci., 22, pp. 251–265.

    Article  Google Scholar 

  • S.J. WALTER, and P.L. BENDER, 1987: Status of the slant path atmospheric refraction calibrator (SPARC),EOS, Trans. Am. Geophys. Union, 68, p. 1239.

    Google Scholar 

  • J.W. WATERS, 1976: Absorption and emission by atmospheric gases. InMethods of Experimental Physics: Astrophysics, 12, part B, editted by M.L. Meeks, pp. 142–175, Academic Press, New York.

    Google Scholar 

  • E.R. WESTWATER, 1967: An analysis of the correction of range errors due to atmospheric refraction by microwave radiometric techniques.ESSA Tech. Rept. IER 30-ITSA30, Available from National Tech. Info. Service. Springfield, VA.

  • E.R. WESTWATER, 1978: The accuracy of water vapor and cloud liquid determinations by dual-frequency ground based microwave radiometry.Radio Science, 13, pp. 677–685.

    Article  Google Scholar 

  • S.C. WU, W.I. BERTIGER, J.S. BORDER, S.M. LICHTEN, R.F. SUNSERI, B.G. WILLIAMS, P.J. WOLFF, and J.T. WU, 1986:OASIS Mathematical Description. Jet Propulsion Laboratory, Pasadena, CA.

    Google Scholar 

  • W.S. YANG, S.J. FRANKE, and G.W. SWENSON Jr., 1981: A system for measuring the “wet” component of atmospheric refraction on a trans-atmospheric radio link.Interim report, NASA Grant # NSG5049, University of Illinois, Urbana, July.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tralli, D.M., Lichten, S.M. Stochastic estimation of tropospheric path delays in global positioning system geodetic measurements. Bull. Geodesique 64, 127–159 (1990). https://doi.org/10.1007/BF02520642

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02520642

Keywords

Navigation