Skip to main content
Log in

Finite covariance functions

  • Published:
Bulletin Géodésique Aims and scope Submit manuscript

Abstract

Because of the full covariance matrices and the computer storage limitations the number of measurements which can be handled by the collocation method simultaneously, is limited. This paper presents a method to compute covariance functions with a finite support yielding sparse covariance matrices. The theoretical background is pointed out and, for the one- and two-dimensional case, special functions are developed which can be combined with the usually used covariance functions to get a “finite covariance function”. Simulated examples to demonstrate the behaviour of different solution methods to solve these special, sparse covariance matrices supplement our investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • I. BRONSTEIN: A Guide Book to Mathematics. Springer, New York, 1973.

    Google Scholar 

  • R. HANSON. A Posteriori Error Propagation. Second International Symposium on Problem Related to the Redefinition of Northamerican Geodetic Networks; Proceedings, pp. 427–445, 1978.

  • P. MEISSL: A Priori Prediction of Roundoff Error Accumulation in the Solution of a Super-Large Geodetic Normal Equation System. NOAA Professional Paper 12, 1980.

  • P. MEISSL: The Use of Finite Elements in Physical Geodesy. OSU Rep. 313, 1981.

  • P. MEISSL: A Modern Approach to Least Squares Adjustment. Mitteilungen der Geodätischen Institut der TU Graz, Folge 43, 1982.

  • H. MORITZ: Covariance Functions in Least-Squares Collocation. OSU Rep. 240, 1976.

  • H. MORITZ: Advanced Physical Geodesy. Wichmann, Karlsruhe, 1980.

    Google Scholar 

  • L. MUSSIO: Il metodo della collocazione minimi quadrati e le sue applicazioni per l'analisi statistica dei risultati delle compensazioni. Ricerche di Geodesia, Topografia e Fotogrammetria, 4, Clup, Milano, 1984.

    Google Scholar 

  • A. PAPOULIS: Systems and Transforms with Applications in Optics. E. Krieger, Malabar, Florida, 1981.

    Google Scholar 

  • F. SANSÒ: The Analysis of Time Series with Applications to Geodetic Control Problems. In “Optimization and Design of Geodetic Networks”, Springer, Berlin, 1985.

    Google Scholar 

  • F. SANSÒ: Statistical Methods in Physical Geodesy. In “Mathematical and Numerical Techniques in Physical Geodesy”. Lecture Notes in Earth Sciences, Springer, Berlin, 1986.

    Google Scholar 

  • W.-D. SCHUH: Analyse und Konvergenzbeschleunigung der Methode der Konjugierten Gradienten bei Geodätischen Netzen. Mitteilungen der Geodätischen Institute der TU Graz, Folge 49, 1984.

  • H. SÜNKEL: A General Surface Representation Module Designed for Geodesy. OSU Rep. 292, 1980.

  • H. SÜNKEL: Cardinal Interpolation. OSU Rep. 312, 1981.

  • H. SÜNKEL: Splines: their equivalence to collocation. OSU Rep. 357, 1984.

  • OSU Rep.: Reports of the Department of Geodetic Science and Surveying, Ohio State University, Columbus, Ohio.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sansò, F., Schuh, W.D. Finite covariance functions. Bull. Geodesique 61, 331–347 (1987). https://doi.org/10.1007/BF02520559

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02520559

Keywords

Navigation