Bulletin Géodésique

, Volume 63, Issue 3, pp 253–262 | Cite as

First and second moments of non-linear least-squares estimators

  • Peter J. G. Teunissen


The first two moments of non-linear and least-squares estimators are studied. Approximate expressions for the moments are derived and discussed. The results are compared with those ofJeudy [1988].


Covariance Matrix Partial Derivative Order Partial Derivative Unbiased Estimator Simple Geometric Interpretation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. L.M.A. JEUDY (1988): Generalized Variance-covariance Propagation Law Formulae and Application to Explicit Least-squares Adjustments. Bulletin Géodésique, Vol. 62, No. 2, pp. 113—124.Google Scholar
  2. A.M. MOOD, F.A. GRAYBILL and D.C. BOES (1974): Introduction to the theory of statistics.Google Scholar
  3. P.J.G. TEUNISSEN (1984): A note on the use of Gauss' formulas in non-linear geodetic adjustments. Reports of the Department of Geodesy, Delft, 84.4.Google Scholar
  4. P.J.G. TEUNISSEN (1985): The Geometry of Geodetic Inverse Linear Mapping and Non-linear Adjustment. Neth. Geod. Comm., Publications on Geodesy, New Series, Vol. 8, No. 1.Google Scholar
  5. P.J.G. TEUNISSEN and E.H. KNICKMEYER (1988): Non-linearity and least-squares. CISM Journal ACSGC, Vol. 42, No. 4, pp. 321–330.Google Scholar

Copyright information

© Bureau Central de L'Association Internationale de Géodésie 1989

Authors and Affiliations

  • Peter J. G. Teunissen
    • 1
  1. 1.Faculty of GeodesyDelft University of TechnologyDelft(The Netherlands)

Personalised recommendations