Skip to main content
Log in

Separation of methyltin species from inorganic tin, and their interactions with humates in natural waters

  • Nuclear Methods in Environmental Science Section
  • Published:
Journal of Radioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Tin(II) and tin(IV) are absorbed from aqueous solutions by Sephadex G-25 gel, from which they can be eluted by humates or fulvates, with which they interact more strongly. Methyltin species are not absorbed by Sephadex G-25, and so can be separated from inorganic tin. Both inorganic tin and methyltin species in natural waters at pH 7.4 can be quantitatively retained by passing through small columns of Chelex-100 resin: the methyltin species can then be washed off the resin with 4M nitric acid. Trimethyltin chloride113Sn in water scarcely interacts with fulvates, humates, kaolinite or montmorillonite but is absorbed bySphagnum peat. Dimethyltin dichloride-113Sn reacts significantly with all the above materials after 2 hours equilibration. Methyltin trichloride-113Sn interacts weakly in alkaline solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. BRAMAN M. A. TOMPKINS, Anal. Chem., 51 (1979) 12.

    Article  CAS  Google Scholar 

  2. H. J. M. BOWEN, Environmental Chemistry of the Elements, Academic Press, London (1979) p. 160.

    Google Scholar 

  3. R. S. TOBIAS, Organometals and Organometalloids, F. E. BRINCKMAN, J. M. BELLAMA (Eds), Amer. Chem. Soc., Washington DC, 1978.

    Google Scholar 

  4. S. U. KHAN, Soil. Sci., 112 (1971) 401.

    Article  CAS  Google Scholar 

  5. J. B. DIXON, S. O. WEED (Eds) Minerals in Soil Environments Soil Sci. Soc. Amer., Madison, Wisc., 1977.

    Google Scholar 

  6. C. L. HUEY, F. E. BRINCKMAN, S. O. GRIM, W. P. IVERSON, Proc. Intern. Conf. on Transport of Persistent Chemicals in Aquatic Ecosystems II, 1973.

  7. P. DOZ W. P. NEUMAN, Angew. Chem., 2 (1963) 165.

    Article  Google Scholar 

  8. P. TAIMSALU, J. L. WOOD, Spectrochim. Acta, 20 (1964) 1043.

    Article  CAS  Google Scholar 

  9. D. GRANT J. R. VON WAZER, J. Organomet. Chem., 4 (1965) 229.

    Article  CAS  Google Scholar 

  10. M. SCHNITZER, S. U. KHAN, Soil Organic Matter, Elsevier, New York, 1978.

    Google Scholar 

  11. M. SZILÁGYI, Soil Sci., 115 (1973) 434.

    Article  Google Scholar 

  12. S. A. WILSON, J. H. WEBER, Chem. Geol., 26 (1979) 345.

    Article  CAS  Google Scholar 

  13. M. SZILÁGYI, Soil Sci., 111 (1971) 233.

    Google Scholar 

  14. R. K. SKOGERBOE S. A. WILSON, Anal. Chem., 53 (1981) 228.

    CAS  Google Scholar 

  15. G. D. TEMPLETON N. D. CHASTEEN, Geochim. Cosmochim. Acta, 44 (1980) 741.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omar, M., Bowen, H.J.M. Separation of methyltin species from inorganic tin, and their interactions with humates in natural waters. J. Radioanal. Chem. 74, 273–282 (1982). https://doi.org/10.1007/BF02520378

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02520378

Keywords

Navigation