Journal of Radioanalytical Chemistry

, Volume 74, Issue 1–2, pp 107–112 | Cite as

Effect of reagent concentration on Cerenkov counting efficiency

  • W. L. Rigot
  • K. Rengan
Article

Abstract

Cerenkov counting is often regarded as a modified version of liquid scintillation counting in which chemical quenching is not manifested. However, the mechanism of Cerenkov counting is such that changes in the concentration of reagents in the counting medium results in changes in Cerenkov counting efficiency. Large changes in counting efficiency occur for nuclides with low average beta energy values (Ēβ). The percent increase in Cerenkov counting efficiency in 4M HCl (relative to water) for various nuclides was found to be a smooth function of Ēβ. The relative change in counting efficiency for24Na,32P,42K and204Tl in HCl, NH4Cl and/or NaCl media are presented. The data emphasizes the need to keep the concentration of various chemicals in Cerenkov counting media constant, especially for nuclides with low Ēβ, values, in order to reproduce counting efficiency.

Keywords

Liquid Scintillation Counting Reagent Concentration Counting Efficiency Beta Radiation Beta Emitter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. H. ROSS, Anal. Chem., 41 (1969), 1260.CrossRefGoogle Scholar
  2. 2.
    R. P. PARKER, R. H. ELRICH in The Current Status of Liquid Scintillation, Counting, E. D. BRANSOME, (Ed.), Grune and Stratton, New York (1970) p. 110.Google Scholar
  3. 3.
    R. P. PARKER in Liquid Scintillation Counting. Vol. 3. Proc. Symp. Brighton, England. M. A. CROOK, P. JOHNSON (Eds), Heydon, London (1973) p. 237.Google Scholar
  4. 4.
    B. FRANCOIS, Intern. J. Nucl. Med. Biol., 1 (1973) 1.CrossRefGoogle Scholar
  5. 5.
    H. H. ROSS, G. T. RASMUSSEN in Liquid Scintillation Counting: Recent Developments. P. E. STANLEY, B. A. SCOGGINS, (Eds), Academic Press, New York (1974) p. 363.Google Scholar
  6. 6.
    D. L. HORROCKS, Liquid Scintillation Counting, Academic Press, New York (1974) p. 263.Google Scholar
  7. 7.
    Y. KOBAYASHI, D. V. MAUDSLEY, Biological Applications of Liquid Scintillation Counting, Academic Press, New York (1974) p. 81.Google Scholar
  8. 8.
    H. H. ROSS in Liquid Scintillation Science and Technology A. A. NOUJAIM, C. EDISS, L. I. WIEBE (Eds), Academic Press, New York (1976) p. 79.Google Scholar
  9. 9.
    G. GUZZI, R. PIETRA, E. SABBIONI, F. GIRARDI J. Radioanal. Chem., 20 (1974) 751.CrossRefGoogle Scholar
  10. 10.
    V. K. HABERER, Atom Wirtschaft 10 (1965) 36.Google Scholar
  11. 11.
    R. H. ELRICK, R. P. PARKER, Intern. J. Appl. Radiat. Isotopes, 19 (1968) 263.CrossRefGoogle Scholar
  12. 12.
    L. I. WIEBE, A. A. NOUJAIM C. EDISS, Intern. J. Appl. Radiat. Isotopes, 22 (1971) 463.CrossRefGoogle Scholar
  13. 13.
    G. J. HINE, G. L. BROWNELL, Radiation Dosimetry, Academic Press, New York (1956) p. 899.Google Scholar
  14. 14.
    R. H. ELRICH, R. P. PARKER, Intern. J. Appl. Radiat. Isotopes, 17 (1966) 361.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1982

Authors and Affiliations

  • W. L. Rigot
    • 1
  • K. Rengan
    • 1
  1. 1.Eastern Michigan UniversityYpsilanti(USA)

Personalised recommendations