Bulletin géodésique

, Volume 59, Issue 3, pp 233–246 | Cite as

Gravity field determination from satellite gradiometry

  • R. Rummel
  • O. L. Colombo


An orbiting gradiometer measures simultaneously several gravity quantities, ideally all six second-order derivatives of the gravitational potential. These contain information on the orbit, on the structure of the gravity field, and on the attitude of the space-craft. Due to the availability of several components simultaneously it is possible to separate orbit determination from attitude or gravity field recovery. This facilitates the analysis of the gradiometer measurements and allows the use of the principles of fast spherical harmonic analysis. The separation of gravity field recovery and orbit determination is tested numerically with a simplified gravity field (with a purely zonal spherical harmonic expansion) up to degree 300. For both the potential coefficients and for the orbit an almost exact recovery is attained after two iteration steps.


Gravity Field Actual Orbit Disturbing Potential Potential Coefficient Initial State Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. G. BALMINO, D. LETOQUART, F. BARLIER, M. DUCASSE, A. BERNARD, B. SACLEUX, C. BOUZAT, J.J. RUNAVOT, X. LE PICHON, M. SAURIAU: Le Projet Gradio et la Determination à Haute Resolution du Geopotentiel. Bulletin Géodésique No. 58, 2, pp. 151–179, 1984.CrossRefGoogle Scholar
  2. O.L. COLOMBO, A. KLEUSBERG: Applications of an Orbiting Gravity Gradiometer. Bulletin Géodésique No. 57, 1, pp. 83–101, 1983.CrossRefGoogle Scholar
  3. O.L. COLOMBO: Numerical Methods for Hamonic Analysis on the Sphere. Dept. Geodetic Science, 310, The Ohio State University, Columbus, 1981.Google Scholar
  4. O.L. COLOMBO: The Global Mapping of Gravity with Two Satellites. Netherlands Geodetic Commission, New Series, 7, 3, Delft, 1984.Google Scholar
  5. R.L. FORWARD: Review of Artificial Satellite Gravity Gradiometer Techniques. Proc. Int. Symp. “The Use of Artificial Satellites for Geodesy and Geodynamics”, pp. 157–192, Athens, 1973.Google Scholar
  6. M.H. KAPLAN: Modern Spacecraft Dynamics & Control. Wiley & Sons, New York, 1976.Google Scholar
  7. W.M. KAULA: Inference of Variations in the Gravity Field from Satellite-to-Satellite Range Rate. Journal of Geophysical Research, 88, B10, pp. 8345–8349, 1983.CrossRefGoogle Scholar
  8. H.J. PAIK: Superconducting Tensor Gravity Gradiometer for Satellite Geodesy and Inertial Navigation. Journal of the Astronautical Sciences, 29, 1, pp. 1–18, 1981.Google Scholar
  9. E.J. PELKA, D.B. DE BRA: The Effects of Relative Instrument Orientation upon Gravity Gradiometer System Performance. Guidance and Control Conference, pp. 247–255 Hollywood, 1977.Google Scholar
  10. R.H. RAPP: Potential Coefficient and Anomaly Degree Variance Modelling Revisited. Dept. Geodetic Science, 293, The Ohio State University, Columbus, 1979.Google Scholar
  11. V.S. REINHARDT, F.O. von BUN, J.P. TURNEAURE: A Supersensitive Accelerometer for Space-craft Gradiometry. Proc. of the IEEE Position Location and Navigation Symposium, Atlantic City, 1982.Google Scholar
  12. C.A. WAGNER: Direct Determination of Gravitational Hamonics from Low-Low GRAVSAT Data, Journal of Geophysical Research, 88, B12, pp. 10309–10321, 1983.CrossRefGoogle Scholar

Copyright information

© Bureau Central de L’Association Internationale de Géodésie 1985

Authors and Affiliations

  • R. Rummel
    • 1
  • O. L. Colombo
    • 2
  1. 1.Afdeling der GeodesieDelft University of TechnologyDelftThe Netherlands
  2. 2.E.G. & G. Washington Analytical Services CenterLanhamU.S.A.

Personalised recommendations