Journal of Radioanalytical Chemistry

, Volume 78, Issue 1, pp 15–24 | Cite as

The point of zero charge and adsorption properties of natural magnetite

  • S. K. Milonjić
  • M. M. Kopečni
  • Z. E. Ilić


In this paper we report the point of zero charge (pHzpc) of natural magnetite and its adsorptive properties with regard to alkali metal ions. It has been found that pHzpc of freshly ground, untreated magnetite is 6.5, decreasing, after treatment with HCl, to the value of pH 3.8. This discrepancy might be explained as a consequence of possible structure changes on the magnetite surface. Adsorption properties of magnetite with respect to Li+, Na+ and K+ ions in the concentration and pH ranges varying from 0.1 to 1.0 mol·dm−3 and 6.5 to 10, respectively, were examined. For the used chloride media used, the adsorption sequence obtained is Na+>K+>Li+.


Magnetite Zero Charge Pressurize Water Reactor Adsorption Sequence Inorganic Sorbent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. V. BALAKRISHNAN, Canadian J. Chem. Eng., 55 (1977) 357.CrossRefGoogle Scholar
  2. 2.
    C. F. BAES, Jr., T. H. HANDLEY, US AEC Document ORNL-3238, 1961.Google Scholar
  3. 3.
    C. F. BAES, Jr., T. H. HANDLEY, US AEC Document ORNL-3416, 1962.Google Scholar
  4. 4.
    C. F. BAES, Jr., T. H. HANDLEY, US AEC Document TID-7641, 1962.Google Scholar
  5. 5.
    F. H. SWEETON, C. F. BAES, Jr., R. W. RAY, US AEC Document ORNL-3789, 1965.Google Scholar
  6. 6.
    F. H. SWEETON, C. F. BAES, Jr., R. W. RAY, T. H. HANDLEY, US AEC Document ORNL-3591, 1964.Google Scholar
  7. 7.
    C. F. PAULSON, Chem. Eng. Progr., 56 (1964) 64.Google Scholar
  8. 8.
    P. J. ANDERSON, Atomic Energy Research Estab., M/R 2046, 1956.Google Scholar
  9. 9.
    S. M. AHMED, D. MAKSIMOV, Mines Branch Research Report, R 196, Dept. of Energy, Mines and Resources, Ottawa, Canada, 1968.Google Scholar
  10. 10.
    S. M. AHMED, D. MAKSIMOV, Can. J. Chem., 46 (1968) 3841.CrossRefGoogle Scholar
  11. 11.
    I. IWASAKI, S. R. B. COOKE, Y. S. KIM, Trans. Am. Inst. Min. Engrs., 223 (1962) 113.Google Scholar
  12. 12.
    S. M. AHMED, J. Phys. Chem., 73 (1969) 3546.CrossRefGoogle Scholar
  13. 13.
    Dj. M. PETKOVIĆ, S. K. MILONJIĆ, Bull. Inst. Nucl. Sci. “Boris Kidric”, 20 (1969) 499.Google Scholar
  14. 14.
    S. K. MILONJIĆ, A. RUVARAC, Bull. Inst. Nucl. Sci. “Boris Kidric”., 21 (1970) 462.Google Scholar
  15. 15.
    P. H. TEWARI, A. W. MCLEAN, J. Colloid Interface Sci., 40 (1972) 267.CrossRefGoogle Scholar
  16. 16.
    P. H. TEWARI, A. B. CAMPBELL, W. LEE, Can. J. Chem., 50 (1972) 1642.CrossRefGoogle Scholar
  17. 17.
    S. K. MILONJIĆ, M. Sc. Thesis, University of Belgrade 1973.Google Scholar
  18. 18.
    D. P. BENTON, G. A. HORSFALL, J. Chem. Soc., (1962) 3899.Google Scholar
  19. 19.
    J. LASKOWSKI, S. SOBIEROJ, Trans. Inst. Mining Met., Sect. C. 78 (1969) 161.Google Scholar
  20. 20.
    J. SHIMOIZAKA, Tohoku Kozan, 6 (1959) 99.Google Scholar
  21. 21.
    S. FUJIGAKI, A. IKEHATA, Y. KUMAGAI, K. NAKAGAVA, Kogyo Yosni, 108 (1967) 22.Google Scholar
  22. 22.
    H. SCHNEIDER, Gas-Wasserfach, Wasser-Abwasser, 111 (1970) 21.Google Scholar
  23. 23.
    P. H. TEWARI, R. H. TUXWORTH, W. LEE, Proc. Symp. Oxide-Electrolyte Interfaces, Electrochem. Soc., 1973, p. 91.Google Scholar
  24. 24.
    S. K. MILONJIĆ, A. LJ. RUVARAC, M. V. ŠUŠIĆ, Termochim. Acta, 11 (1975) 261. There is an error in this paper, i. e. it was indicated that Fe3O4 was treated with 2 mol·dm−3 HNO3. Actually, magnetite was washed with distilled water only, as it is originally indicated in Ref.17.CrossRefGoogle Scholar
  25. 25.
    E. A. NECHAEV, V. A. VOLGINA, Dep. VINITI (USSR), No. 3067-76, Dep. Aug. 10, 1976.Google Scholar
  26. 26.
    S. K. MILONJIĆ, A. LJ, RUVARAC, M. V. ŠUŠIČ, Bull. Soc. Chim. Beograd, 43 (1978) 207.Google Scholar
  27. 27.
    B. VANKATARAMANI, K. S. VENKATERSWALU, J. SHANKAR, L. H. BEATSLE, Proc. Indian Acad. Sci., 87 (1978) 415.Google Scholar
  28. 28.
    B. VANKATARAMANI, K. S. VENKATESWALU, J. SHANKAR, J. Colloid Interface Sci., 67 (1978) 187.CrossRefGoogle Scholar
  29. 29.
    S. M. AHMED in Oxide and Oxide Films, J. W. DIGGLE (Ed.), Vol. 2, Marcel Dekker, New York, 1973, p. 319–517.Google Scholar
  30. 30.
    G. A. PARKS, P. L. de BRUYN, J. Phys. Chem., 66 (1962) 967.Google Scholar
  31. 31.
    See for example: D. E. YATES, T. W. HEALY, J. C. S. Faraday I, 76 (1980) 9.CrossRefGoogle Scholar
  32. 32.
    T. MORIMOTO, S. KITTAKA, Bull. Chem. Soc. Japan, 46 (1973) 3040.CrossRefGoogle Scholar
  33. 33.
    S. KITTAKA, J. Colloid Interface Sci., 48 (1974) 327.CrossRefGoogle Scholar
  34. 34.
    P. J. ANDERSON, Proc. 2nd Intern. Cong. Surface Activity, London, 3 (1957) 67. From “Recent Progress in Surface Science”., J. F. DANIELLI, K. G. A. PANKHURST, A. C. RIDDIFORD, (Eds.), Vol. 2, Academic Press, New York, 1964, p. 189.Google Scholar
  35. 35.
    YU. M. CHERNOBERZHSKII, V. I. DERDULLA, Elektropoverkhnostnye yavleniya v dispersnykh sistemakh, Nauka, Moskva, 1972, p. 24–37.Google Scholar
  36. 36.
    J. LYKLEMA, Croat. Chim. Acta, 43 (1971) 249.Google Scholar
  37. 37.
    J. LYKLEMA, T. W. HEALY, Disc. Faraday. Soc., 52 (1971) 318.Google Scholar

Copyright information

© Akadémiai Kiadó 1983

Authors and Affiliations

  • S. K. Milonjić
    • 1
  • M. M. Kopečni
    • 1
  • Z. E. Ilić
    • 1
  1. 1.The Boris Kidrič Institute of Nuclear Sciences-VinčaBeograd(Yugoslavia)

Personalised recommendations