Skip to main content
Log in

Quantitative analysis by X-ray fluorescence using first principles for matrix correction

  • Published:
Journal of Radioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The quantitative interpretation of X-ray fluorescence (XRF) data is often difficult because of matrix effects. The intensity of fluorescence measured for a given element is not only dependent on the element's concentration, but also on the mass absorption coefficients of the sample for the excitation and fluorescence radiation. Also, there are interelement effects in which high-energy fluorescence from heavier elements is absorbed by ligher elements, with a resulting enhancement of their fluorescence. Recent theoretical treatments of this problem have shown that X-ray fluorescence data can be corrected for these matrix effects by calculations based on first principles. Fundamental constants, available in atomic physics data tables, are the only parameters needed. It is not necessary to make empirical calibrations. In this paper we report the application of this correctional procedure to alloys and alumina-supported catalysts. We also discuss how it may be applied to other matrices. A description is given of a low-background spectrometer which uses monochromatic AgKα radiation for excitation. Matrix corrections by first principles can be easily applied to data from instruments of this type because fluorescence excitation cross-sections and mass absorption coefficients can be accurately defined for monochromatic radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. D. RASPBERRY, K. F. J. HEINRICH, Anal. Chem., 46 (1974) 81.

    Article  Google Scholar 

  2. J. W. CRISS, L. S. BIRKS, Anal. Chem., 40 (1968) 1080.

    Article  CAS  Google Scholar 

  3. J. SHERMAN, Spectrochim. Acta, 7 (1955) 283.

    Article  CAS  Google Scholar 

  4. R. D. GIAUGUE, J. M. JAKLEVIC, Advances in X-ray Analysis 15, K. F. J. HEINRICH et al., (Eds), Plenum Press, 1971, p. 164.

  5. C. J. SPARKS, Jr., Advances in X-ray Analysis Vol. 19. R. W. GOULD et al. (Eds), Kendall/Hunt Publishing Co., Dubuque, Iowa, 1900, p. 19.

    Google Scholar 

  6. C. J. SPARKS, A. B. CAVIN, L. A. HARRIS, J. C. OGLE, Trace Substances in Environmental Health, VII, A symposium edited by D. D. HEMPHILL, University of Missouri, Columbia.

  7. L. D. HULETT, H. W. DUNN, J. M. DALE, J. F. EMERY, W. S. LYON, and P. S. MURTY, Proc. of IAEA Symp. on Measurement Detection and Control of Environmental Pollutants, Vienna, Austria, IAEA-SM-206/41, March 1976.

  8. C. J. SPARKS, J. C. OGLE, ORNL Metals and Ceramics Division, Oak Ridge, Tennessee private communication.

  9. F. H. SCHAMBER, X-ray Fluorescence Analysis of Environmental Samples, TH. DZUBAY (Ed.), Ann Arbor Science Publishing Co., Ann Arbor, Michigan, Library Congress No. 76-22238, ISBN 0-250-40134-7.

  10. H. L. COX, Jr., P. S. ONG, Medical Physics, 4 (1977) 99.

    Article  CAS  Google Scholar 

  11. J. W. CRISS, X-ray Optics Branch, Naval Research Laboratory, Code 6480, Washington, D. C., private communication.

  12. R. C. REYNOLDS, Am. Mineral., 52 (1967) 1493.

    CAS  Google Scholar 

  13. M. FRANZINI, L. LEONI, M. SAITTA, X-ray Spectrometry, 5 (1976) 84.

    Article  CAS  Google Scholar 

  14. J. S. CRISS, Anal. Chem., 48 (1976) 179.

    Article  CAS  Google Scholar 

  15. M. F. CICCARELLI, Anal. Chem., 49 (1977) 345.

    Article  CAS  Google Scholar 

  16. D. A. STEPHENSON, Anal. Chem., 43 (1971) 1761.

    Article  CAS  Google Scholar 

  17. J. W. OTVOS, G. E. A. WYLD, T. C. YAO, Shell Development Co., Houston, Texas, 25th Annual Denver X-ray Conference, August, 1976, in press.

  18. W. H. MCMASTERS, N. K. DEL GRANDE, J. H. MALLETT, J. H. HUBBELL, University of California, Lawrence Radiation Laboratory Report, UCRL 50174, May 1969.

  19. D. T. CROMER, D. LIBERMAN, Los Alamos Scientific Laboratory Report. LA4403, July 1970.

  20. W. BAMBYNEK, B. CRASEMANN, R. W. FINK, H.-U. FREUND, H. MARK, C. D. SWIFT, R. E. PRICE, P. V. RAO, Rev. Mod. Phys., 44 (1972) 716.

    Article  CAS  Google Scholar 

  21. J. H. SCOFIELD, Phys. Rev., 179 (1969) 9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The Oak Ridge National Laboratory is operated by Union Carbide Corporation under contract with the U. S. Energy Research and Development Administration.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hulett, L.D., Dunn, H.W. & Tarter, J.G. Quantitative analysis by X-ray fluorescence using first principles for matrix correction. J. Radioanal. Chem. 43, 541–557 (1978). https://doi.org/10.1007/BF02519511

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02519511

Keywords

Navigation