Skip to main content
Log in

Simulation of three-dimensional pulsatile flow through an asymmetric stenosis

  • Modelling
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The main objective of this work was to use desktop workstations to evaluate the computer code HEMO as a tool for predicting coronary blood flows. The flows are usually characterised by complex vortical structures and transitional effects, and as such present challenging computational problems. As the results of the computations shown in the paper demonstrate, we can predict realistic pulsatile flows in constricted tubes using the Sun Sparcstation 1+ in a matter of hours. The results shown in the paper have also demonstrated that the computer simulations can be very useful as a complementary tool for experimental investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, S., andGiddens, D. P. (1984): ‘Pulsatile poststenotic flow studies with laser Doppler anemometry’,J. Biomech.,17, p. 695

    Article  Google Scholar 

  • Bassenge, E., andBusse, R. (1988) ‘Endothelial modulation of vascular tone’,Progr. Cardiovasc. Dis.,30, pp. 349–380

    Article  Google Scholar 

  • Caro, E. G., Fitzgerald, J. M., andSchroter, R. C. (1971): ‘Atheroma and arterial wall shear. Observation correlation and proposal for a shear-dependent mass transfer mechanism for atherogenesis,’Proc. R. Soc. London,B 117, pp. 109–159

    Article  Google Scholar 

  • Chorin, A. J. (1968): ‘Numerical solution of the Navier-Stokes equations’,Math. Comput.,22, p. 742.

    MathSciNet  Google Scholar 

  • Chorin, A. J. (1989): ‘Computational fluid mechanics’ (Academic Press)

  • Dukowicz, J. K., andDvinsky, A. S. (1992): ‘Approximate factorization as a high order splitting for the implicit incompressible flow equations,’J. Comput. Phys.,102, pp. 336–347

    Article  MATH  MathSciNet  Google Scholar 

  • Dvinsky, A. S. (1987): ‘FLUENT/BFC: a general purpose flow modeling program for all flow speeds’ inTaylor, C. et al. (Eds.) ‘Numerical methods in laminar and turbulent flow’ (Pineridge Press)

  • Dvinsky, A. S. (1991): ‘Adaptive grid generation from harmonic maps on Riemannian manifolds’,J. Comput. Phys.,95, p. 450

    Article  MATH  MathSciNet  Google Scholar 

  • Dvinsky, A. S., Ojha, M., andPerng, C.-Y. (1991): ‘A transitional pulsatile flow through an asymmetrically constricted tube: a numerical investigation’in Vanderby, R. (Ed.), ‘Advances in bioengineering’ (ASME) Vol. 20

  • Dvinsky, A. S., andDukowicz, J. K. (1993): ‘Null-space-free methods for the incompressible Navier-Stokes equations on non-staggered curvilinear grids’,Computers & Fluids,22, (6), pp. 685–696

    Article  MATH  MathSciNet  Google Scholar 

  • Glagov, S., Zarins, C., Giddens, D. P., andKu, D. (1988): ‘Hemodynamics and atherosclerosis’,Arch. pathol. Lab. Med.,112, p. 1019.

    Google Scholar 

  • Hamakiotes, C. S., andBerger, S. A. (1988): ‘Fully developed pulsatile flow in a curved pipe’,J. Fluid Mech.,195, p. 23

    Article  Google Scholar 

  • Harlow, F. H., andWelch, J. E. (1965): ‘Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface’,Phys. Fluids,8, p. 2182

    Article  Google Scholar 

  • Ku, D. N., Zeigler, M. N., andDowning, J. M. (1990): ‘One-dimensional steady inviscid flow through a stenotic collapsible tube’,J. Biomech. Eng.,112, pp. 444–450

    Google Scholar 

  • Langille, B. L., andO’Donnell, F. (1986): ‘Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium dependent’,Science,231, pp. 405–407

    Article  Google Scholar 

  • Lieber, B. B., andGiddens, D. P. (1990): ‘Post-stenotic core flow behavior in pulsatile flow and its effects on wall shear stress’,J. Biomech.,6, p. 597

    Article  Google Scholar 

  • Ojha, M., Cobbold, R. S. C., Johnston, K. W., andHummel, R. L. (1989): ‘Pulsatile flow through constricted tubes: an experimental investigation using photochromic tracer methods’,J. Fluid Mech.,203, p. 173

    Article  Google Scholar 

  • Ojha, M., Cobbold, R. S. C., Johnston, K. W., andHummel, R. L. (1990): ‘Detailed visualization of pulsatile flow fields produced by modelled arterial stenoses’,J. Biomed. Eng.,12, pp. 463–469

    Google Scholar 

  • Patel, D. J., andVaishnav, R. N. (1980): ‘Basic hemodynamics and its role in disease process’ (University Park Press, Baltimore, Maryland)

    Google Scholar 

  • Peskin, C. S. (1977): ‘Numerical analysis of blood flow in the heart’,J. Comp. Phys.,25, p. 220

    Article  MATH  MathSciNet  Google Scholar 

  • Rittgers, S. E., andShu, M. C. S. (1990): ‘Doppler color-flow images from a stenosed arterial model. Interpretation of flow patterns’,J. Vasc. Surg.,12, p. 511

    Article  Google Scholar 

  • Young, D. F., andTsai, F. Y. (1973): ‘Flow characteristics in models of arterial stenoses’,J. Biomech.,6, pp. 395; 547

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dvinsky, A.S., Ojha, M. Simulation of three-dimensional pulsatile flow through an asymmetric stenosis. Med. Biol. Eng. Comput. 32, 138–142 (1994). https://doi.org/10.1007/BF02518910

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02518910

Keywords

Navigation