Medical and Biological Engineering and Computing

, Volume 36, Issue 6, pp 801–812 | Cite as

Tissue-engineered human skin substitutes developed from collagen-populated hydrated gels: clinical and fundamental applications

  • F. A. Auger
  • M. Rouabhia
  • F. Goulet
  • F. Berthod
  • V. Moulin
  • L. Germain
Cellular Engineering: Bioengineering of the Skin


The field of tissue engineering has opened several avenues in biomedical sciences, through ongoing progress. Skin substitutes are currently optimised for clinical as well as fundamental applications. The paper reviews the development of collagen-populated hydrated gels for their eventual use as a therapeutic option for the treatment of burn patients or chronic wounds: tools for pharmacological and toxicological studies, and cutaneous models for in vitro studies. These skin substitutes are produced by culturing keratinocytes on a matured dermal equivalent composed of fibroblasts included in a collagen gel. New biotechnological approaches have been developed to prevent contraction (anchoring devices) and promote epithelial cell differentiation. The impact of dermo-epidermal interactions on the differentiation and organisation of bio-engineered skin tissues has been demonstrated with human skin cells. Human skin substitutes have been adapted for percutaneous absorption studies and toxicity assessment. The evolution of these human skin substitutes has been monitored in vivo in preclinical studies showing promising results. These substitutes could also serve as in vitro models for better understanding of the immunological response and healing mechanism in human skin. Thus, such human skin substitutes present various advantages and are leading to the development of other bio-engineered tissues, such as blood vessels, ligaments and bronchi.


Tissue engineering Skin Skin equivalent Collagen Collegen gels 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agren, M. S., Taplin, C. J., Woessner, F., Eaglstein, W. H. Jr., andMertz, P. M. (1992) ‘Collagenase in wound healing: Effect of wound age and type’,J. Invest. Dermatol.,99, pp. 709–714Google Scholar
  2. Allgöwer, M., Schoenenberger, G. A., andSparkes, B. (1995): ‘Burning the largest immune organ’,Burns,21, pp. S7-S47Google Scholar
  3. Asselineau, D., Bernard, B. A., Bailly, C., andDarmon, M. (1989): ‘Retinoic acid improves epidermal morphogenesis’,Develop. Biology,133, pp. 322–335Google Scholar
  4. Asselineau, D., Cavey, M.-T., Shroot, B., andDarmon, M. (1992): ‘Control of epidermal differentiation by a retinoid analogue unable to bind to cytosolic retinoic acid-binding proteins (CRABP)’,J. Invest. Dermatol.,98, pp. 128–134Google Scholar
  5. Auger, F. A. (1988): ‘The role of cultured autologous human epithelium in large burn wound treatment’,Transplantation/Implantation Today,5, pp. 21–26Google Scholar
  6. Auger, F. A., López Valle, C. A., Guignard, R., Tremblay, N., Noél, B., Goulet, F., andGermain, L. (1995): ‘Skin equivalents produced using human collagens’,In Vitro Cell. Dev. Biol.,31, pp. 432–439Google Scholar
  7. Azzam, H. S., andThompson, E. W. (1992): ‘Collagen-induced activation of the Mr 72,000 Type IV collagenase in normal and malignant fibroblastoid cells’,Cancer Res.,52, pp. 4540–4544Google Scholar
  8. Bailly, C., Drèza, S., Asselineau, D., Nusgens, B., Lapière, C. M., andDarmon, M. (1990): ‘Retinoic acid inhibits the production of collagenase by human epidermal keratinocytes’,J. Invest. Dermatol.,94, pp. 47–51Google Scholar
  9. Barker, C. F., andBillingham, R. E. (1972): ‘Immunologically competent passenger cells in mouse skin’,Transplantation,14, pp. 525–527Google Scholar
  10. Barra, R. M., Fenjves, E. S., andTaichman, L. B. (1994): ‘Secretion of apolipoprotein E by basal cells in culture of epidermal keratinocytes’,J. Invest. Dermatol.,102, pp. 61–66Google Scholar
  11. Barrandon, Y., andGreen, H. (1985): ‘Cell size as a determinant of the clone-forming ability of human keratinocytes’,Proc. Natl. Acad. Sci. (USA),82, pp. 5390–5394Google Scholar
  12. Bartek, M. J., LaBudde, J. A., andMaibach, H. I. (1972): ‘Skin permeabilityin vivo: comparison in rat, rabbit, pig and man’,J. Invest. Dermatol.,58, pp. 114–123Google Scholar
  13. Baschong, W., Sütterlin, R., andAebi, U. (1997): ‘Punchwounded, fibroblast populated collagen matrices: a novel approach for studying cytoskeletal changes in three dimensions by confocal laser scanning microscopy’,Eur. J. Cell Biol.,72, pp. 189–201Google Scholar
  14. Bauer, E. A., andUitto, J. (1979): ‘Collagen and cutaneous diseases’,Int. J. Dermatol.,18, pp. 251–270Google Scholar
  15. Bell, E., Ivarsson, B., Merrill, C. (1979): ‘Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potentialin vitro’,Proc. Natl. Acad. Sci. USA,76, pp. 1274–1278Google Scholar
  16. Bell, E., Ehrlich, H. P., Buttle, D. J., andNakatsuji, T. (1981a): ‘Living tissue formedin vitro and accepted as skin-equivalent tissue of full thickness’,Science,211, pp. 1042–1054Google Scholar
  17. Bell, E., Ehrlich, H. P., Sher, S., Merrill, C., Sarber, R., Hull, B., Nakatsuji, T., Church, B., andButtle, D. (1981b): ‘Development and use of a living skin equivalent’,Plast. Reconstr. Surg.,67, pp. 386–392Google Scholar
  18. Bell, E., Sher, S., Hull, B., Merrill, C., Rosen, S., Chamson, A., Asselineau, D., Dubertret, L., Coulomb, B., Lapière, C., Nusgens, B., andNeveux, Y. (1983): ‘The reconstitution of living skin’,J. Invest. Dermatol.,81, pp. 2s-10sGoogle Scholar
  19. Bell, E., Parenteau, N., Gay, R., Nolte, C., Kemp, P., Ekstein, B., andJohnson, E. (1991): ‘The living skin equivalent: its manufacture, its organotypic properties and its responses to irritants’,Toxic. in vitro,5, pp. 591–596Google Scholar
  20. Berthod, F., andAuger, F. A. (1997): ‘In vitro applications of skin substitutes for dermatological purposes’,in Roubhia, M. (Ed.): ‘Skin substitute production by tissue engineering: clinical and fundamental applications’ (Landes Bioscience, Austin). pp. 211–237Google Scholar
  21. Berthod, F., andDamour, O. (1997): ‘In vitro reconstructed skin models for wound coverage in deep burns’,Br. J. Dermatol.,136, pp. 809–816Google Scholar
  22. Berthod, F., Germain, L., Guignard, R., Lethias, C., Garrone, R., Damour, O., van der Rest, M., andAuger, F. A. (1997): ‘Differential expression of collagens XII and XIV in human skin and in reconstructed skin’,J. Invest. Dermatol.,108, pp. 737–742Google Scholar
  23. Bibo, P. R., Nolte, C. M., Tighe, C., andParenteau, N. L. (1993): ‘A highly differentiated organotypic skin model for dermatologic, pharmacologic and toxicologic research’,J. Toxicol.-Cut. Ocul. Toxicol.,12, pp. 183–196Google Scholar
  24. Bligh, E. G., andDyer, W. J. (1959): ‘A rapid method of total lipid extraction and purification’,Can. J. Biochem. Physiol.,37, pp. 911–917Google Scholar
  25. Bos, J. D., andKapsenberg, M. L. (1986): ‘The skin immune system. Its cellular constituents and their interactions’,Immunol. Today,7, pp. 235–240Google Scholar
  26. Bos, J. D., andKapsenberg, M. L. (1993): ‘The skin immune system; progress in cutaneous biology’,Immunol. Today,14, pp. 75–78Google Scholar
  27. Bouvard, V., Germain, L., Rompré, P., Roy, B., andAuger, F. A. (1992): ‘Influence of dermal equivalent maturation on a skin equivalent development’,Biochem. Cell Biol.,70, pp. 34–42Google Scholar
  28. Boyce, S. T., Glafkides, M. C., Foreman, T. J., andHansbrough, J. F. (1988): ‘Reduced wound contraction after grafting of full-thickness wounds with a collagen and chondroitin-6-sulfate (GAG) dermal skin substitute and coverage with Biobrane’,J. Burn Care Rehabil.,9, pp. 364–370Google Scholar
  29. Boyce, S. T., Medrano, E. E., Abdel-Malek, Z. A., Supp, A. P., Dodick, J. M., Nordlynd, J. J., andWarden, G. D. (1993): ‘Pigmentation and inhibition of wound contraction by cultured skin substitutes with adult melanocytes after transplantation to athymic mice’,J. Invest. Dermatol.,100, pp. 360–365Google Scholar
  30. Boyce, S. T. (1994): ‘Epidermis as a secretory tissue’,J. Invest. Dermatol.,102, pp. 8–10Google Scholar
  31. Boyce, S. T., Supp, A. P., Harringer, M. D., Greenhalgh, D. G., andWarden, G. D. (1995): ‘Topical nutrients promote engraftment and inhibit wound contraction of cultured skin substitutes in athymic mice’,J. Invest. Dermatol.,104, pp. 345–349Google Scholar
  32. Boyce, S. T., Foreman, T. J., English, K. B., Stayner, N., Cooper, M. L., Sakabu, S., andHansbrough, J. F. (1991): ‘Skin wound closure in athymic mice with cultured human cells, biopolymers, and growth factors’,Surgery,110, pp. 866–876Google Scholar
  33. Chin, Y. H., Falanga, V., Streilein, J. W., andSackstein, R. (1988): ‘Specific lymphocyte-endothelial cell interactions regulate migration into lymph nodes, Peyer's patches and skin’,Regional Immunol.,1, pp. 78–85Google Scholar
  34. Choi, Y., andFuchs, E. (1990): ‘TGF-β and retinoic acid: regulators of growth and modifiers of differentiation in human epidermal cells’,Cell Regulation,1, pp. 791–809Google Scholar
  35. Contard, P., Bartel, R. L., Jacobs II, L., Perlish, J. S., MacDonald, II, E. D., Handler, L., Cone, D., andFleischmajer, R. (1993): ‘Culturing keratinocytes and fibroblasts in a three-dimensional mesh results in epidermal differentiation and formation of a basal-lamina-anchoring zone’,J. Invest. Dermatol.,100, pp. 35–39Google Scholar
  36. Coulomb, B., Dubertret, L., Merrill, C., Touraine, R., andBell, E. (1984): ‘The collagen lattice: a model for studying the physiology, biosynthetic function and pharmacology of the skin’,Br. J. Dermatol.,111, pp. 83–87Google Scholar
  37. Coulomb, B., Lebreton, C., andDubertret, L. (1989): ‘Influence of human dermal fibroblasts on epidermalization’,J. Invest. Dermatol.,92, pp. 122–125Google Scholar
  38. Damour, O., Braye, F., Foyatier, J. L., Fabreguette, A., Rousselle, P., Vissac, S., andPetit, P. (1997): ‘Cultured autologous epidermis for massive burn wounds: 15 years of practice’,in Rouabhia, M. (Ed.): ‘Skin substitute production by tissue engineering: clinical and fundamental applications’ (Landes Bioscience, Austin). pp. 23–45Google Scholar
  39. De Luca, M., Bondanza, S., Cancedda, R., Tamisani, A. M., Di Noto, C., Muller, L., Dioguardi, D., Brienza, E., Calvario, A., Zermani, R., Di Mascio, D., andPapadia, F. (1992): ‘Permanent coverage of full skin thickness burns with autologous cultured epidermis and reepithelialization of partial skin thickness lesions induced by allogeneic cultured epidermis: a multicentre study in the treatment of children’,Burns,18S, pp. S16-S18Google Scholar
  40. Donati, L., Magliacani, G., Bormioli, M., Signorini, M., andBaruffaldi Preis, F. W. (1992): ‘Clinical experiences with keratinocyte grafts’,Burns,18S, pp. S19-S26Google Scholar
  41. Dubertret, L. (1990): ‘Reconstruction of the human skin equivalentin vitro: A new tool for skin biology’,Skin Pharmacol.,3, pp. 144–148Google Scholar
  42. Duncan, M. R., andBerman, B. (1991): ‘Stimulation of collagen and glycosaminoglycan production in cultured human adult dermal fibroblasts by recombinant human Interleukin 6’,J. Invest. Dermatol.,97, pp. 686–692Google Scholar
  43. Eaglstein, W. H., Iriondo, M., andLaszlo, K. (1995): ‘A composite substitute (Graftskin®) for surgical wounds: a clinical experience’,Dermatol. Surg.,10, pp. 839–843Google Scholar
  44. Eaglstein, W. H., andFalanga, V. (1997): ‘Tissue engineering and the development of Apligraf, a human skin equivalent’,Clin. Ther.,19, pp. 894–905Google Scholar
  45. Eckes, B., Krieg, T., Nusgens, B. V., andLapière, C. M. (1995): ‘In vitro reconstituted skin as a tool for biology, pharmacology and therapy; a review’,Wound Rep. Reg.,3, pp. 248–257Google Scholar
  46. Ehrlich, H. P. (1988): ‘The modulation of contraction of fibroblast populated collagen lattices by types I, II, and III colagen’,Tissue & Cell.,20, pp. 47–50Google Scholar
  47. Ehrlich, H. P., andRajaratnam, J. B. M. (1990): ‘Cell locomotion forces versus cell contraction forces for collagen lattice contraction: anin vitro model of wound contraction’,Tissue Cell,22, pp. 407–417Google Scholar
  48. Finesmith, T. H., Broadley, K. N., andDavidson, J. M. (1990): ‘Fibroblasts from wounds of different stages of repair vary in their ability to contract a collagen gel in response to growth factors’,J. Cell Physiol.,144, pp. 99–107Google Scholar
  49. Franz, T. J. (1975): ‘Percutaneous absorption. On the relevance ofin vitro data’,J. Invest. Dermatol.,19, pp. 99–104Google Scholar
  50. Fuchs, E. (1990): ‘Epidermal differentiation: the bare essentials’,J. Cell Biol.,111, pp. 2807–2814Google Scholar
  51. Gabriani, G., Ryan, G. B., andMajno, G. (1971): ‘Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction’,Experientia,27, pp. 549–550Google Scholar
  52. Gallico, G. G., O'Connor, N. E., Compton, C. C., Kehinde, O., andGreen, H. (1984): ‘Permanent coverage of large burn wounds with autologous cultured human epithelium’,N. Engl. J. Med.,331, pp. 448–451Google Scholar
  53. Garrel, D. R., Gaudreau, P., Zhang, L., Reeves, I., andBrazeau, P. (1991): ‘Chronic administration of growth hormone-releasing factor increases wound strength and collagen maturation in granulation tissue’,J. Surg. Res.,51, pp. 297–302Google Scholar
  54. Gay, R., Swiderek, M., Nelson, D., andErnesti, A. (1992): ‘The living skin equivalent as a modelin vitro for ranking the toxic potential of dermal irritants’,Toxic. in vitro,6, pp. 303–315Google Scholar
  55. Geesin, J. C., Brown, L. J., Gordon, J. S., andBerg, R. A. (1993): ‘Regulation of collagen synthesis in human dermal fibroblasts in contracted gels by ascorbic acid, growth factors, and inhibitors of lipids peroxidation’,Exp. Cell Res.,206, pp. 283–290Google Scholar
  56. Genever, P. G., Wood, E. J., andCunliffe, W. J. (1993): ‘The wounded dermal equivalent offers a simplified model for studying wound repairin vitro’,Exp. Dermatol.,2, pp. 266–273Google Scholar
  57. Germain, L., Rouabhia, M., Guignard, R., Carrier, L., Bouvard, V., andAuger, F. A. (1993): ‘Improvement of human keratinocyte isolation and culture using thermolysin’,Burns,19, pp. 99–104Google Scholar
  58. Germain, L., Jean, A., Auger, F. A., andGarrel, D. R. (1994): ‘Human wound healing fibroblasts have greater contractile properties than dermal fibroblasts’,J. Surg. Res.,57, pp. 268–273Google Scholar
  59. Germain, L., andAuger, F. A. (1995): ‘Tissue engineered biomaterials: biological and mechanical characteristics’,in Wise, D. L., Trantolo, D. J., Altobelli, D. E., Yaszemski, M. J., Gresser, J. D., andSchwartz, E. R. (Eds.): ‘Encyclopedic handbook of biomaterials and bioengineering Part B: Applications’ (Marcel Dekker Inc. New York),1, pp. 699–734Google Scholar
  60. Germain, L., Guignard, R., Rouabhia, M., andAuger, F. A. (1995): ‘Early basement membrane formation following the grafting of cultured epidermal sheets detached with thermolysin or Dispase’,Burns,21, pp. 175–180Google Scholar
  61. Goulet, F., Poitras, A., Rouabhia, M., Cusson, D., Germain, L., andAuger, F. A. (1996): ‘Stimulation of human keratinocyte proliferation through growth factor exchanges with dermal fibroblastsin vitro’,Burns,22, pp. 107–112Google Scholar
  62. Goulet, F., Germain, L., Caron, C., Rancourt, D., Normand, A., andAuger, F. A. (1997a): ‘Tissue-engineered ligament’,in Yahia, L. H. (Ed.): ‘Ligaments and ligamentoplasties’ (Springer-Verlag, Berlin, Heidelberg) pp. 367–377Google Scholar
  63. Goulet, F., Germain, L., Rancourt, D., Caron, C., Normand, A., andAuger, F. A. (1997b): ‘Tendons and ligaments’,in Lanza, R., Langer, R., andChick, W. L. (Eds.): ‘Textbook of tissue engineering’ (Landes R G Co. & Academic Press Ltd., Austin, Texas), pp. 633–644Google Scholar
  64. Grant, M. E., andProckop, D. J. (1972): ‘The biosynthesis of collagen’,N. Engl. J. Med.,286, pp. 194–199Google Scholar
  65. Green, H., Kehinde, O., andThomas, J. (1979): ‘Growth of cultured human epidermal cells into multiple epithelia suitable for grafting’,Proc. Natl. Acad. Sci. USA,76, pp. 5665–5668Google Scholar
  66. Green, H., andBarrandon, Y. (1988): ‘Cultured epidermal cells and their use in the generation of epidermis’,NIPS,3, pp. 54–56Google Scholar
  67. Grinnell, F., andLamke, C. R. (1984): ‘Reorganization of hydrated collagen lattices by human skin fibroblasts’,J. Cell. Sci.,66, pp. 51–63Google Scholar
  68. Guidry, C., andGrinnell, F. (1985): ‘Studies on the mechanisms of hydrated collagen gel reorganization by human skin fibroblasts’,J. Cell Sci.,79, pp. 67–81Google Scholar
  69. Guidry, C., andGrinnell, F. (1986): ‘Contraction of hydrated collagen gels by fibroblasts: Evidence for two mechanisms by which collagen fibrils are stabilized’,Collagen Rel. Res.,6, pp. 515–529Google Scholar
  70. Guidry, C., andGrinnell, F. (1987): ‘Heparin modulates the organization of hydrated collagen gels and inhibits gel contraction by fibroblasts’,J. Cell Biol.,104, pp. 1097–1103Google Scholar
  71. Gullberg, D., Tingström, A., Thuresson, A., Olsson, L., andTerracio, L. (1990): ‘β1 integrin-mediated collagen gel contraction is stimulated by PDGF’,Exp. Cell Res.,186, pp. 264–272Google Scholar
  72. Hansbrough, J. F., Morgan, J. L., Greenleaf, G., Parikh, M., Nolte, C. J., andWilkins, L. (1994): ‘Evaluation of Graftskin composite grafts on full-thickness wounds on athymic mice’,J. Burn. Care Rehabil.,15, pp. 346–53Google Scholar
  73. Hefton, J. M., Amberson, J. B., Biozes, D. G., andWeksler, M. E. (1984): ‘Loss of HLA-DR expression by human epidermal cells after growth in culture’,J. Invest. Dermatol.,83, pp. 48–50Google Scholar
  74. Heussen, C., andDowdle, E. B. (1980): ‘electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates’,Anal. Biochem.,102, pp. 196–202Google Scholar
  75. Jahoda, C. A. B., andReynolds, A. J. (1993): ‘Dermal-epidermal interactions-Follicle-derived cell populations in the study of hair-growth mechanisms’,J. Invest. Dermatol.,101, pp. 33s-38sGoogle Scholar
  76. Jalkanen, S., Steere, A. D., Fox, R. I., andButcher, E. D. 91986): ‘A distinct endothelial cell recognition system that controls lymphocyte traffic into inflamed synovium’,Science,233, pp. 556Google Scholar
  77. Karelina, T. V., Hruza, G. J., Goldberg, G. I., andEisen, A. Z. (1993): ‘Localization of 92-kDa Type IV collagenase in human skin tumors: Comparison with normal human fetal and adult skin’,J. Invest. Dermatol.,100, pp. 159–165Google Scholar
  78. Katz, A. B., andTaichman, L. B. (1994): ‘Epidermis as a secretory tissue: Anin vitro tissue model to study keratinocyte secretion’,J. Invest. Dermatol.,102, pp. 55–60Google Scholar
  79. Kratz, G., Haegerstrand, A., andDalsgaard, C.-J. (1991): ‘Conditioned medium from cultured human keratinocytes has growth stimulatory properties on different human cell types’,J. Invest. Dermatol.,97, pp. 1039–1043Google Scholar
  80. L'Heureux, N., Germain, L., Labbé, R., andAuger, F. A. (1993): ‘In vitro construction of a human blood vessel from cultured vascular cells’,J. Vasc. Surg.,17, pp. 499–509Google Scholar
  81. L'Heureux, N., Páquet, S., Labbé, R., Germain, L., andAuger, F. A. (1998): ‘A completely biological tissue-engineered human blood vessel’,FASEB J.,12, pp. 47–56Google Scholar
  82. Laemmli, U. K. (1970): ‘Cleavage of structural proteins during the assembly of the head of bacteriophage T4’,Nature,227, pp. 680–685Google Scholar
  83. Lafrance, H., Guillot, M., Germain, L., andAuger, F. A. (1995a): ‘Method for the evaluation of tensile properties of skin equivalents’,Med. Eng. Phys.,17, pp. 537–543Google Scholar
  84. Lafrance, H., Yahia, L'H., Germain, L., Guillot, M., andAuger, F. A. (1995b): ‘Study of the tensile properties of living skin equivalents’,Biomed. Mat. Eng.,5, pp. 195–208Google Scholar
  85. Lambert, C. A., Soudant, E. P., Nusgens, B. V., andLapière, C. M. (1992): ‘Pretranslational regulation of extracellular matrix macromolecules and collagenase expression in fibroblasts by mechanical forces’,Lab. Invest.,66, pp. 444–451Google Scholar
  86. Laska, D. A., Poulsen, R. G., Horn, J. W., Meador, V. P., andHoover, D. M. (1992): ‘An evaluation of TESTSKIN®: an alternative dermal irritation model’,In Vitro Toxic,5, pp. 177–189Google Scholar
  87. Lin, Y.-C., andGrinnell, F. (1993): ‘Decreased level of PDGF-stimulated receptor autophosphorylation by fibroblasts in mechanically relaxed collagen matrices’,J. Cell Biol.,122, pp. 663–672Google Scholar
  88. López Valle, C. A., Auger, F. A., Rompré, P., Bouvard, V., andGermain, L. (1992a): ‘Peripheral anchorage of dermal equivalents’,Br. J. Dermatol.,127, pp. 365–371Google Scholar
  89. López Valle, C. A., Glaude, P., andAuger, F. A. (1992b): ‘Tieover dressings: surgical model forin vivo evaluation of cultured epidermal sheets in mice’,Plast. Reconstr. Surg.,89, pp. 139–144Google Scholar
  90. López Valle, C. A., Germain, L., andAuger, F. A. (1992c): ‘Modele chirurgical murin pour l'étude des greffons cultivés’,Annales de chirurgie,46, pp. 845–850Google Scholar
  91. López Valle, C. A., Germain, L., Rouabhia, M., Xu, W., Guignard, R., Goulet, F., andAuger, F. A. (1996): ‘Grafting on nude mice of living skin equivalents produced using human collagens’,Transplantation,62, pp. 317–323Google Scholar
  92. Mackenzie, I. C., andFusenig, N. E. (1983): ‘Regeneration of organized epithelial structure’,J. Invest. Dermatol.,81, pp. 189s-194sGoogle Scholar
  93. Majno, G., Gabbiani, G., Hirschel, B. J., Ryan, G. B., andStatkov, P. R. (1971): ‘Contraction of granulation tissuein vitro: similarity to smooth muscle’,Science,173, pp. 548–550Google Scholar
  94. Marchese, C., Rubin, J., Ron, D., Faggioni, A., Torrisi, M. R., Messina, A., Frati, L., andAaronson, S. A. (1990): ‘Human keratinocyte growth factor activity on proliferation and differenciation of human keratinocytes: Differenciation response distinguishes KGF from EGF family’,J. Cell. Physiol.,144, pp. 326–332Google Scholar
  95. Matsue, H., Cruz, P. D., Bergstresser, P. R., andTakashima, A. (1992): ‘Cytokine expression by epidermal cell subpopulations’,J. Invest. Dermatol.,99, pp. 42S-45SGoogle Scholar
  96. Maurer, D., andStingl, G. (1995): ‘Immunoglobulin E-binding structures on antigen-presenting cells present in skin and blood’,J. Invest. Dermatol.,104, pp. 707–710Google Scholar
  97. Medalie, D. A., Eming, S. A., Colins, M. E., Tomkins, R. G., Yarmush, M. L., andMorgan, J. R. (1997): ‘Differences in dermal analogs influence subsequent pigmentation, epidermal differentiation, basement membrane, and rete ridge formation of transplanted composite skin grafts’,Transplantation,64, pp. 454–469Google Scholar
  98. Michel, M., Auger, F. A., andGermain, L. (1993): ‘Anchored skin equivalent culturedin vitro: A new tool for percutaneous absorption studies’,In vitro Cell Dev. Biol.,29A, pp. 834–837Google Scholar
  99. Michel, M., Germain, L., Bélanger, P. M., andAuger, F. A. (1995): ‘Funotional evaluation of anchored skin equivalent cultured in vitro: percutaneous absorption studies and lipid analysis’,Pharm. Res.,12, pp. 455–458Google Scholar
  100. Michel, M., Török, N., Godbout, M.-J., Lussier, M., Gaudreau, P., Royal, A., andGermain, L. (1996): ‘Keratin 19 as a biochemical marker of skin stem cellsin vivo andin vitro. Keratin 19 expressing cells are differentially localized in function of anatomic sites and their number varies with donor age and culture stage’,J. Cell Sci.,109, pp. 1017–1028Google Scholar
  101. Michel, M., L'Heureux, N., Germain, L., andAuger, F. A. (1997): ‘From newborn to adult: ;phenotypic and functional properties of skin equivalent and human skin as a function of donor age’,J. Cell Physiol.,17, pp. 179–189Google Scholar
  102. Moll, R., Franke, W. W., andSchiller, D. L. (1982): ‘The catalog of human cytokeratins: Patterns of expression in normal epithelia, tumors and cultured cells’,Cell,31, pp. 11–24Google Scholar
  103. Moulin, V., Castilloux, G., Jean, A., Garrel, D. R., Auger, F. A., andGermain, L. (1996): ‘In vitro models to study wound healing fibroblasts’,Burns,22, pp. 359–362Google Scholar
  104. Moulin, V., Auger, F. A., O'Connor-McCourt, M., andGermain, L. (1997): ‘Fetal and postnatal sera differentially modulate human dermal fibroblast phenotypic and functional featuresin vitro’,J. Cell Physiol.,171, pp. 1–10Google Scholar
  105. Moulin, V., Castilloux, G., Auger, F. A., Garrel, D., O'Connor-McCourt, M., andGermain, L. (1998): ‘Comparison of human wound healing myofibroblasts with dermal fibroblastsin vitro’,Exp. Cell Res.,238, pp. 283–293Google Scholar
  106. Muhart, M., McFalls, S., Kirsner, R., Kerdel, F., andEaglstein, W. H. (1997): ‘Bioengineered skin’,Lancet,350, pp. 1142Google Scholar
  107. Nickoloff, B. J., andTurka, L. A. (1994): ‘Immunological functions of non-professional antigen-presenting cells: new insights from studies of T-cell interactions with keratinocytes’,Immunol. Today,15, pp. 464–469Google Scholar
  108. Nolte, C. J. M., Oleson, M. A., Hansbrough, J. F., Morgan, J., Greenleaf, G., andWilkins, L. (1994): ‘Ultrastructural features of composite skin cultures grafted onto athymic mice’,J. Anat.,185, pp. 325–33Google Scholar
  109. Nusgens, B., Merrill, C., Lapiere, C., andBell, E. (1984): ‘Collagen biosynthesis by cells in a tissue equivalent matrix in vitro’,Collagen Rel. Res.,4, pp. 351–364Google Scholar
  110. Ohta, A., Louie, J. C., andUitto, J. (1987): ‘Retinoid modulation by adherent mononuclear cells in culture’,Ann. Rheum. Dis.,46, pp. 357–362Google Scholar
  111. Oikarinen, A., Kylmäniemi, M., Autio-Harmainen, H., Autio, P., andSalo, T. (1993): ‘Demonstration of 72-kDa and 92-kDa forms of type IV collagenase in human skin: variable expression in various blistering diseases, induction during re-epithelialization, and decrease by topical glucocorticoïds’,J. Invest. Dermatol.,101, pp. 205–210Google Scholar
  112. Paladini, R. A., Takahashi, K., Bravo, N. S., andCoulombe, P. A. (1996): ‘Onset of re-epithelialization after skin injury correlates with a reorganization of keratin filaments in wound edge keratinocytes: defining a potential role for keratin 16’,J. Cell. Biol.,132, pp. 381–397Google Scholar
  113. Páquet, I., Chouinard, N., andRouabhia, M. (1996): ‘Cutaneous cell and extracellular matrix responses to ultraviolet-B irradiation’,J. Cell. Phys.,166, pp. 296–304Google Scholar
  114. Paquette, J. S., Goulet, F., Boulet, L.-P. Tremblay, N., Chakir, J., Germain, L., andAuger, F. A. (1998): ‘Three-dimensional production of bronchiin vitro’,Can. Resp.,5, p. 1Google Scholar
  115. Parenteau, N. L., Nolte, C. M., Bilbo, P., Rosenberg, M., Wilkins, L. M., Johnson, E. W., Watson, S., Mason, V. S., andBell, E. (1991): ‘Epidermis generatedin vitro: Practical considerations and applications’,J. Cell Biochem.,45, pp. 245–251Google Scholar
  116. Parenteau, N. L., Bilbo, P., Nolte, C. M., Mason, V. S., andRosenberg, M. (1992): ‘The organotypic culture of human skin keratinocytes and fibroblasts to achieve form and function’,Cytotechnol.,9, pp. 163–171Google Scholar
  117. Pasternak, A. S., andMiller, W. M. (1995): ‘First-order toxicity assays for eye irritation using cell lines: parameters that affectsin vitro evaluation’,Fund. Appl. Toxicol.,25, pp. 253–263Google Scholar
  118. Petersen, M. J., Woodley, D. T., Stricklin, G. P., andO'Keefe, E. J. (1987): ‘Production of procollagenase by cultured human keratinocyte’,J. Biol. Chem.,262, pp. 835–840Google Scholar
  119. Phillips, T. J., Bhawa, J., Leigh, I. M., Baum, H. J., andGilchrist, B. A. (1990): ‘Cultured epidermal autografts and allografts: a study of differentiation and allograft survival’,J. Am. Acad. Dermatol.,23, pp. 189–1948Google Scholar
  120. Phillips, T. J., andGilchrest, B. A. (1990): ‘Cultured epidermal grafts in the treatment of leg ulcers’,Adv. Dermatol.,5, pp. 33–48Google Scholar
  121. Phillips, C. L., Tajna, S., andPinnell, S. R. (1992): ‘Aseorbic acid and transforming growth factor-β increase collagen biosynthesis via different mechanisms: coordinate regulation of pro-α(I) and pro-α(III) collagens’,Arch. Biochem. Biophys.,295, pp. 397–403Google Scholar
  122. Ponec, M., Weerheim, A., Kempenaar, J., Mommaas, A. M., andNugteren, D. H. (1988): ‘Lipid composition of cultured human keratinocytes in relation to their differentiation’,J. Lipid Res.,29, pp. 949–961Google Scholar
  123. Ponec, M. (1991): ‘Reconstruction of human epidermis on deepidermized dermis: Expression of differentiation-specific protein markers and lipid composition’,Toxic. In Vitro,5, pp. 597–606Google Scholar
  124. Ponec, M., Weerheim, A., Kempenaar, J., Mulder, A., Gooris, G. S., Bouwstra, J., andMommaas, A. M. (1997): ‘The formation of competent barrier lipids in reconstructed human epidermis requires the presence of vitamin C’,J. Invest. Dermatol.,109, pp. 348–355Google Scholar
  125. Poole, A. R., Ritzkalla, G., Reiner, A., Brooks, E., Rorabeck, C., Bourne, R., andBogoch, E. (1993): ‘Osteoarthritis in the human knee: A dynamic process of cartilage matrix degradation, synthesis and reorganization’,in van der Berg, W. M., van der Kraan, P. M., andvan Lent P. L. E. M. (Eds.): ‘Joint destruction in arthritis and osteoarthritis’ (Birkhäuser Verlag, Basel, Germany), pp. 3–13Google Scholar
  126. Pope, M., Betjes, M. G. H., Hirmand, H., Hoffman L., andSteinman, R. M. (1995): ‘Both dendritic cells and memory T lymphocytes emigrate from organ cultures of human skin and form distinctive dendritic T-cell conjugates’,J. Invest. Dermatol.,104, pp. 11–17Google Scholar
  127. Postlethwaite, A. E., Holness, M. A., Katai, H., andRaghow, R. (1992): ‘Human fibroblasts synthetise elevated levels of extracellular matrix proteins in response to interleukin-4’,J. Clin. Invest.,90, pp. 1479–1485Google Scholar
  128. Prunieras, M., Régnier, M., andWoodley, D. (1983): ‘Methods for cultivation of keratinocytes with an air-liquid interface’,J. Invest. Dermatol.,81, pp. 28s-33sGoogle Scholar
  129. Rajabi, M. R., Dodge, G. R., Solomon, S., andPoole, A. R. (1991): ‘Immunochemical and immunohistochemical evidence of estrogen-mediated collagenolysis as a mechanism of cervical dilatation in the guinea pig at parturition’,Endocrinology,128, pp. 371–378Google Scholar
  130. Raynaud, F., Bauvois, B., Gerbaud, P., andEvain-Brion, D. (1992): ‘Characterization of specific proteases associated with the surface of human skin fibroblasts, and their modulation in pathology’,J. Cell. Physiol.,151, pp. 378–385Google Scholar
  131. Régnier, M., Staquet, M.-J., Schmitt, D., andSchmidt, R. (1997): ‘Integration of Langherans cells into pigmented reconstructed human epidermis’,J. Invest. Dermatol.,109, pp. 510–512Google Scholar
  132. Reponen, P., Sahlberg, C., Munaut, C., Thesleff, I., andTryggvason, K. (1994): ‘High expression of 92-kD Type IV collagenase (gelatinase B) in the osteoclast lineage during mouse development’,J. Cell. Biol.,124, pp. 1091–1102Google Scholar
  133. Rheinwald, J. G., andGreen, H. (1975): ‘Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells’,Cell,6, pp. 331–344Google Scholar
  134. Rheinwald, J. G., andGreen H. (1977): ‘Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes’,Nature,265, pp. 421–424Google Scholar
  135. Rice, R. H., andGreen, H. (1979): ‘Presence in human epidermal cells of a soluble protein precursor of the cross-linked envelope: Activation of the cross-linking by calcium ions’,Cell,18, pp. 681–694Google Scholar
  136. Romanic, A. M., andMadri, J. A. (1994): ‘The induction of 72-kD gelatinase in T cells upon adhesion to endothelial cells is VCAM-1 dependent’,J. Cell. Biol.,125, pp. 1165–1178Google Scholar
  137. Rompré, P., Auger, F. A., Germain, L., Bouvard, V., López Valle, C. A., Thibault, J., andLe Duy, A. (1990): ‘The influence of initial collagen and cellular concentrations on the final surface area of dermal and skin equivalents: A Box-Behnken analysis’,In Vitro Cell Dev. Biol.,26, pp. 983–990Google Scholar
  138. Rouabhia, M., Germain, L., Bélanger, F., andAuger, F. A. (1993): ‘Cultured epithelium allografts: Langerhans cell thy-1+ dendritic epidermal cell depletion effects on allograft rejection’,Transplantation,56, pp. 259–264Google Scholar
  139. Rouabhia, M., Germain, L., andAuger, F. A. (1995): ‘Allogenic-syngeneic cultured epithelia: A successful therapeutic option for skin regeneration’,Transplantation,59, pp. 1229–1235Google Scholar
  140. Rouabhia, M. (1996a): ‘Permanent skin replacement using chimeric epithelial cultured sheets compromising xenogeneic and syngeneic keratinocytes’,Transplantation,61, pp. 1290–1300Google Scholar
  141. Rouabhia, M. (1996b): ‘In vitro production and transplantation of an immunologically active skin equivalents’,Lab. Invest.,75, pp. 305–317Google Scholar
  142. Rowden, G., Colp, P., Den, S., Auger, F. A., andLópez Valle, C. A. (1992): ‘Comparative epidermal Langherans cell migration studies in epidermal and epidermaldermal equivalents grafts’,J. Invest. Dermatol.,99, pp. 59–61Google Scholar
  143. Roy, S. D., Fujiki, J., andFleitman, J. S. (1993): ‘Permeabilities of alkyl p-aminobenzoates through living skin equivalent and cadaver skin’,J. Pharm. Sci.,82, pp. 1266–1268Google Scholar
  144. Rubin, J. S., Osada, H., Finch, P. W., Taylor, W. G., Rudikoff, S., andAaronson, S. A. (1989): ‘Purification and characterisation of a newly identified growth factor specific for epithelial cells’,Proc. Natl. Acad. Sci. (USA),86, pp. 802–806Google Scholar
  145. Rudolph, R. (1980): ‘Contraction and the control of contraction’,World J. Surg.,4, pp. 279–287MathSciNetGoogle Scholar
  146. Rudolph, R., Vande Berg, J., andEhrlich, P. H. (1992): ‘Wound contraction and scar contracture’,in Saunders W. B. (Ed.): ‘Wound healing: Biochemical and clinical aspects’6, pp. 96–114Google Scholar
  147. Ryan, G. B., Cliff, W. J., Gabbiani, G., Irlé, C., Montandon, D., Statkow, P. R., andMajno, G. (1974): ‘Myofibroblasts in human granulation tissue’,Human Pathology,5, pp. 55–67Google Scholar
  148. Sabolinski, M. L., Rovee, D. T., Parenteau, N. L., andMulder, G. D. (1996): ‘The efficacy and safety of Graftskin® for the treatment of chronic venous ulcers’,Biomaterials,17, pp. 311–320Google Scholar
  149. Schröder, J.-M. (1995): ‘Cytokine networks in the skin’,J. Invest. Dermatol.,105, pp. 20S-24SGoogle Scholar
  150. Schürch, W., Seemayer, T. A., andGabbiani, G. (1992): ‘Myofibroblast’,in Sternberg, S. S. (Ed.) ‘Histology for pathologists’ (Raven Press, NY),5, pp. 109–144Google Scholar
  151. Seltzer, J. L., Lee, A.-Y., Akers, K. T., Sudbeck, B., Southon, E. A., Wayner, E. A., andEisen, A. Z. (1994): ‘Activation of 72-kDa type IV collagenase/gelatinase by normal fibroblasts in collagen lattices is mediated by integrins receptors but is not related to lattice contraction’,Exp. Cell Res.,213, pp. 365–374Google Scholar
  152. Shakespeare, V., andShakespeare, P. (1991): ‘Effects of granulation-tissue-conditioned medium on the growth of human keratinocytesin vitro’,Br. J. Plast. Surg.,44, pp. 219–223Google Scholar
  153. Simon, M., andGreen, H. (1985): ‘Enzymatic cross-linking of involucrin and other proteins by keratinocyte particulatesin vitro’,Cell,40, pp. 677–683Google Scholar
  154. Souren, J. M., Ponec, M., andvan Wijk, R. (1989): ‘Contraction of collagen by human fibroblasts and keratinocytes’,In Vitro Cell. Dev. Biol.,25, pp. 1039–1045Google Scholar
  155. Stanley, E. R., andGuilbert, L. J. J. (1981): ‘Methods for the purification, assay, characterization and target cell binding of a colony stimulating factor (CSF-1)’,Immunol. Methods,42, pp. 253–284Google Scholar
  156. Stephens, P., Wood, E. J., andRaxworthy, M. J. (1996): ‘Development of a multilayeredin vitro model for studying events associated with wound healing’,Wound Rep. Reg.,4, pp. 393–401Google Scholar
  157. Stoner, M. L., andWood, F. M. (1996): ‘Systemic factors influencing the growth of cultured epithelial autograft’,Burns,22, pp. 197–199Google Scholar
  158. Streilein, J. W. (1983): ‘Skin-associated lymphoid tissues (SALT): origins and functions’,J. Invest. Dermatol.,80, pp. 12s-16sGoogle Scholar
  159. Tamaki, K., Saitoh, A., Gaspari, A. A., Yasaka, N., andFurue, M. (1994): ‘Migration of Thy-1+ dendritic epidermal cells (Thy-1+DEC): Ly48 and TNF-g are responsible for the migration of Thy-1+DEC to the epidermis’,J. Invest. Dermatol.,103, pp. 290–294Google Scholar
  160. Tavakkol, A., Elder, J. T., Griffiths, C. E. M., Cooper, K. D., Talwar, H., Fisher, G. J., Keane, K. M., Foltin, S. K., andVoorhees, J. J. (1992): ‘Expression of growth hormone receptor, insulin-like growth factor 1 (IGF-1) and IGF-1 receptor mRNA and proteins in human skin’,J. Invest. Dermatol.,99, pp. 343–349Google Scholar
  161. Tingstrom, A., Heldin, C., andRubin, K. (1992): ‘Regulation of fibroblast-mediated collagen gel contraction by platelet-derived growth factor, interleukin-la and transforming growth factor-β1’,J. Cell Sci.,102, pp. 315–322Google Scholar
  162. Tuan, T., Song, A., Chang, S., Younai, S., andNimmi, M. E. (1996): ‘In vitro fibroplasia: matrix contraction, cell growth, and collagen production of fibroblasts cultured in fibrin gels’,Exp. Cell Res.,223, pp. 127–134Google Scholar
  163. Turksen, K., Youngsook, C., andFuchs, E. (1991): ‘Transforming growth factor alpha induces collagen degradation and cell migration in differentiating human epidermal graft cultures’,Cell. Regulation,2, pp. 613–625Google Scholar
  164. Uitto, J., andEisen, A. Z. (1987): ‘Biology of the dermis: collagen’,in Fitzpatrick, T. B., Eisen, A. Z., Wolff, K. Freedberg, I. M., andAusten, K. F. (Eds.): ‘Dermatology in general medicine’ (McGraw Hill Book Co., New York)1, pp. 1–1598Google Scholar
  165. Weinberg, C. B., andBell, E. (1986): ‘A blood vessel model constructed from collagen and cultured vascular cells’,Science,231, pp. 397–400Google Scholar
  166. Werner, S., Peters, K. G., Longaker, M. T., Fuller-Pace, F., Banda, M. J., andWilliams, L. T. (1992): ‘Large induction of keratinocyte growth factor expression in the dermis during wound healing’,Proc. Natl. Acad. Sci. (USA),89, pp. 6896–6900Google Scholar
  167. Wilkins, L. M. (1994): ‘Development of a bilayered living skin construct for clinical applications’,Biotechnol. Bioeng.,43, pp. 747–756Google Scholar
  168. Woessner, J. F. (1991): ‘Matrix metalloproteinases and their inhibitors in connective tissue remodeling’,FASEB,5, pp. 2145–2154Google Scholar
  169. Wolff, K., andStingl, G. (1983): ‘The Langerhans cell’,J. Invest. Dermatol.,80, pp. 17s-21sGoogle Scholar
  170. Woodley, D. T., Peterson, H. D., andHerzog, S. R. (1988): ‘Burn wounds resurfaced by cultured epidermal autografts show abnormal reconstitution of anchoring fibrils’,JAMA,259, pp. 2566–2571Google Scholar
  171. Woodley, D. T., Yamauchi, M., Kimberley, C. W., Mechanic, G., andBriggaman, R. A. (1991): ‘Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction’,J. Invest. Dermatol.,97, pp. 580–585Google Scholar
  172. Xu, W., Germain, L., Goulet, F., andAuger, F. A. (1996a): ‘Permanent grafting of living skin substitutes: Surgical parameters to control for successful results’,J. Burn Care Rehabil.,17, pp. 7–13MATHGoogle Scholar
  173. Xu, W., Li, H., Brodniewicz, T., Auger, F. A., andGermain, L. (1996b): ‘Cultured epidermal sheet grafting with Hemaseel® HMN fibrin sealant on nude mice’,Burns,22, pp. 191–196Google Scholar
  174. Yuspa, S. H., Wang, Q., Weinberg, W. C., Goodman, L., Ledbetter, S., Dooley, T., andLichti, U. (1993): ‘Regulation of hair follicle development: anin vitro model for hair follicle invasion of dermis and associated connective tissue remodeling’,J. Invest. Dermatol.,101, pp. 27S-32SGoogle Scholar
  175. Zieske, J. D., Mason, V. S., Wasson, M. E., Meunier, S. F., Nolte, C. J. M., Fukai, N., Olsen, B. R., andParenteau, N. L. (1994): ‘Basement membrane assembly and differentiation of cultured corneal cells: importance of culture environment and endothelial cell interactions’,Exp. Cell Res.,214, pp. 621–633Google Scholar

Copyright information

© IFMBE 1998

Authors and Affiliations

  • F. A. Auger
    • 1
  • M. Rouabhia
    • 1
  • F. Goulet
    • 1
  • F. Berthod
    • 1
  • V. Moulin
    • 1
  • L. Germain
    • 1
  1. 1.Laboratoire D'Organogénèse Expérimentale (LOEX), CHA-Pavillon Saint-Sacrement, Département de chirurgieUniversité LavalCanada

Personalised recommendations