Skip to main content
Log in

Three-dimensional biomechanical model for simulating the response of the human body to vibration stress

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Several investigations have revealed that long-term exposure to whole-body vibrations can induce low back pain. In analogy to materials handling, the health risk can be assessed if the forces transmitted in the spine during vibration are known. To estimate the forces a biomechanical model has been developed in which the human trunk, neck, head and arms are represented by 16 rigid bodies. An additional body simulates the vibrating seat. The bodies are connected by visco-elastic joint elements, and 56 force elements imitate the trunk and neck muscles. The motion equations are derived by means of the dynamics of systems of rigid bodies, and the motions are simulated in three directions. The frequency-response functions between the accelerations of the seat and the head satisfactorily correspond to data reported in the literature. The spine forces are composed of a static part, due to body posture, and a vibration-induced part. The relation between the oscillating parts of the forces transmitted from seat to pelvis and the spine forces are also described by frequency-response functions. To assess the health risk the simulated spine forces must be compared with the strength of the spine, bearing in mind that this is dependent on the number of load cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

x, y, z :

coordinates according to the basicentric system of ISO 2631-1

a :

acceleration of the excitation

f :

frequency of the excitation

q :

vector of the generalised coordinates of the multibody system

\(\ddot q\) :

second time derivative ofq

A andB :

matrices of the equation of motion

K :

stiffness matrix

H axy :

frequency-response function between accelerations

H fxy :

frequency-response function between time dependent forces

References

  • Andersson, G. B. J. (1981): ‘Epidemiologic aspects of low back pain in industry,’Spine,6, pp. 53–60

    Article  Google Scholar 

  • Broman, H., Pope, M., andHansson, T. (1996): ‘A mathematical model for the impact response of the seated subject,’Med. Eng. Phys.,18, pp. 410–419

    Article  Google Scholar 

  • Buck, B. (1997): ‘Ein Modell für das Schwingungsverhalten des sitzenden Menschen mit detaillierter Abbildung der Wirbelsäule und Muskulatur im Lendenbereich.’ Thesis, Technische Hochschule Darmstadt, Shaker Verlag

  • Buck, B., Pankoke, S., andWölfel, H. P. (1997): ‘Lateralsymmetrisches Modell der Lendenwirbelsäule zur Berechnung dynamischer Bandscheibenkräfte (Schlußericht).’ Schriftenreihe der Bundesanstalt für Arbeitsschutz und Arbeitsmedizin,-Forschung-, Fb 770

  • Coermann, R. (1962): ‘The mechanical impedance of the human body in sitting and standing position at low frequencies,’Human Factors,4, pp. 227–253

    Google Scholar 

  • Dempster, W. T. (1955): ‘Space requirements of the seated operator.’ WADC Technical report no. 55-159

  • Dieckmann, D. (1957): ‘Einfluß vertikaler mechanischer Schwingungen auf den Menschen,’Int. Z. angew. Physiol.,16, pp. 519–564

    Google Scholar 

  • Dieckmann, D. (1958): ‘Einfluß horizontaler mechanischer Schwingungen auf den Menschen,’Int. Z. angew. Physiol.,17, pp. 83–100

    Google Scholar 

  • Dupuis, H. (1986): ‘Ganz-Körper-Schwingungen und Wirbelsäule-Stellungnahme (1),’Arb. Med. Soz. Med. Prä. Med.,21, pp. 186–187

    Google Scholar 

  • Fischer, G. (1976): ‘Theory of equipment design’in Harris, C. M., andCrede, C. E. (Eds.): ‘Shock and vibration handbook, 2nd edn. (McGraw-Hill Book Company, New York), pp. 42-1–42-36

    Google Scholar 

  • Freund, H. J. (1983): ‘Motor unit and muscle activity in voluntary motor control,’Physiol. Rev.,63, pp. 387–428

    Google Scholar 

  • Fritz, M. (1991): ‘An improved biomechanical model for simulating the strain of the hand-arm system under vibration stress,’J. Biomech.,24, pp. 1165–1171

    Article  Google Scholar 

  • Fritz, M. (1996): ‘Abschätzung der in der Wirbelsäule bei Ganz-Körper-Schwingungen wirkenden Kräfte mit Hilfe eines biomechanischen Modells,’Z. Arb. Wiss.,50(22 NF), pp. 174–179

    Google Scholar 

  • Fritz, M. (1997a): ‘Estimation of spine forces under whole-body vibration by means of a biomechanical model and transfer functions,’Aviat. Space Environ. Med.,68, pp. 512–519

    Google Scholar 

  • Fritz, M. (1997b): ‘Ermittlung der in der Wirbelsäule bei Ganz-Körper-Schwingungen wirkenden Kräfte mit Hilfe eines biomechanischen Modells’in VDI-Gesselschaft Entwicklung, Konstruktion, Vertrieb (Eds.): ‘Schwingungen am Arbeitsplatz und in der Umwelt, VDI-Berichte 1345’ (VDI Verlag, Düsseldorf), pp. 217–224

    Google Scholar 

  • Hagena, F. W. (1985): ‘Zur Biomechanik der Wirbelsäule—Untersuchungen zum Dämpfungsverhalten der Wirbelsäule durch Beschleunigungsmessungen an gesunden Probanden und autoptisch gewonnenen LWS-Präparaten.’ Thesis for the habilitation, Ludwig maximilian University of Munch

  • Jäger, M., andLuttmann, A. (1992): ‘The load on the lumbar spine during asymmetrical bi-manual materials handling,’Ergonomics,35, pp. 783–805

    Google Scholar 

  • Luo, Z., andGoldsmith, W. (1991): ‘Reaction of human head/neck/torso system to shock,’J. Biomech.,24, pp. 499–510

    Article  Google Scholar 

  • Luttmann, A., Jäger, M., Laurig, W., andSchlegel, K. F. (1988): ‘Orthopaedic disease among transport workers,’Int. Arch. Occup. Environ. Health,61, pp. 197–205

    Article  Google Scholar 

  • Markolf, K. L. (1971): Stiffness and damping characteristics of the throacolumbar spine’in ‘Proceedings of Workshop on Bioengineering Approaches to Problems of the Spine’ (Department of Health, Education, and Welfare, California), pp. 87–143

  • Merrill, T., Goldsmith, W., andDeng, Y. C. (1984): ‘Three-dimensional response of a lumped parameter head-neck model due to impact on impulsive loading,’J. Biomechanics,17, pp. 81–95

    Article  Google Scholar 

  • Mertens, H. (1976): ‘Das dynamische Verhalten des sitzenden Menschen unter Beschleunigungseinfluß.’ PdD thesis, RWTH Aachen

    Google Scholar 

  • Mertens, H. (1978): ‘Nonlinear behavior of sitting humans under increasing gravity,’Aviat. Space Environ. Med.,49, pp. 287–298

    Google Scholar 

  • MESA VERDE, Version 4.2, IPG-Ingenieurgemeinschaft, Prof. Dr.-Ing, Gnadler, Karlsruhe

  • Paddan, G. S., andGriffin, M. J. (1988a): ‘The transmission of translational seat vibration to the head—I. Vertical seat vibration,’J. Biomech.,21, pp. 191–198

    Article  Google Scholar 

  • Paddan, G. S., andGriffin, M. J. (1988b): ‘The transmission of translational seat vibration to the head—II. Horizontal seat vibration.’J. Biomech.,21, pp. 199–206

    Article  Google Scholar 

  • Panjabi, M. M., Brand, R. A., andWhite, A. A. (1976): ‘Three-dimensional flexibility and stiffness properties of the human thoracic spine,’J. Biomech.,9, pp. 185–192

    Article  Google Scholar 

  • Panjabi, M. M., Andersson, G. B. J., Jorneus, L., Hult, E., andMattsson, L. (1986): ‘In vivo measurements of spinal column vibrations,’J. Bone Joint Surg.,68-A, pp. 695–702

    Google Scholar 

  • Pope, M. H., Broman, H., andHansson, T. (1989): ‘The dynamic response of a subject seated on various cushions,’Ergonomics,32, pp. 1155–1166

    Google Scholar 

  • Pope, M. H., Magnusson, M., andHansson, T. (1997): ‘The upper extremity attenuates intermediate frequency vibrations,’J. Biomech.,30, pp. 103–108

    Article  Google Scholar 

  • Privitzer, E., andBelytschko, E. (1980): ‘Impedance of a three-dimensional head-spine model,’Math. Model.,1, pp. 189–209

    Article  Google Scholar 

  • Qassem, W., Othman, M. O., andAbdul-majeed, S. (1994): ‘The effects of vertical and horizontal vibrations on the human body,’Med. Eng. Phys.,16, pp. 151–162

    Article  Google Scholar 

  • Seidel, H., Blüthner, R., andHinz, B. (1986): ‘Effects of sinusoidal whole-body vibration on the lumbar spine: The stress-strain relationship,’Int. Arch. Occup. Environ. Health,57, pp. 207–223

    Article  Google Scholar 

  • Seidel, H. andHeide, R. (1986): ‘Long-term effects of whole-body vibration on the lumbar spine: a critical survey of the literature,’Int. Arch. Occup. Environ. Health,58, pp. 1–26

    Article  Google Scholar 

  • Seidel, H., Blüthner, R., Hinz, B., andSchust, M. (1995): ‘Belastung der Lendenwirbelsäule durch stoßhaltige Ganzkörperschwingungen,’ Schriftenreihe der Bundesanstalt für Arbeitsmedizin, Forschung FB 01 HK 061, Berlin

  • Seroussi, R., Wilder, D., andPope, M. (1989): ‘Trunk muscle electromyography and whole body vibration,’J. Biomech.,23, pp. 219–229

    Article  Google Scholar 

  • Wikström, B. O. (1993): ‘Effects from twisted posture and whole-body vibration during driving,’Int. J. Industrial Ergonomics,12, pp. 61–75

    Article  Google Scholar 

  • Wikström, B. O., Kjellberg, A., andLandström, U. (1994): ‘Health effects of long-term occupational exposure to whole-body vibration: A review,’Int. J. Industrial Ergonomics,14, pp. 273–292

    Article  Google Scholar 

  • Wilder, D. G., andPope, M. H. (1996): ‘Epidemiological and aetiological aspects of low back pain in vibration environments—an update,’Clin. Biomech.,11, pp. 61–73

    Article  Google Scholar 

  • Wittenburg, J. (1977): ‘Dynamics of systems of rigid bodies,’ (Leitfäden der angewandten Mathematik und Mechanik, Bd. 33) Teubner, Stuttgart

    MATH  Google Scholar 

  • Yamada, H. (1973): ‘Strength of biological materials’ (R.E. Krieger Publ. Co., Huntington, New York)

    Google Scholar 

  • ISO 2631-1: ‘Mechanical vibration and shock—Guide to the evaluation of human exposure to whole-body vibration—Part 1: General requirements’ (1993)

  • ISO 5982: ‘Vibration and shock—Mechanical driving point impedance of the human body’ (1981)

  • ISO 7962: ‘Mechanical vibration and shock—Mechanical transmissibility of the human body in thez-direction’ (1987)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fritz.

Additional information

second subscript indicates the direction of the input signal, third subscript indicates the direction of the output signal

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fritz, M. Three-dimensional biomechanical model for simulating the response of the human body to vibration stress. Med. Biol. Eng. Comput. 36, 686–692 (1998). https://doi.org/10.1007/BF02518870

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02518870

Keywords

Navigation