Advertisement

Medical and Biological Engineering and Computing

, Volume 36, Issue 6, pp 673–678 | Cite as

Non-invasive temperature imaging of muscles with magnetic resonance imaging using spin-echo sequences

  • E. Mietzsch
  • M. Koch
  • M. Schaldach
  • J. Werner
  • B. Bellenberg
  • K. U. Wentz
Article

Abstract

The application of spin-echo magnetic resonance imaging sequences on non-invasive temperature imaging for temperature mapping of human limbs is investigated. In an in vitro expriment performed on a meat sample, the equilibrium magnetisation P and the spin-lattice relaxation time T1 are calculated from the values for the repetition time TR and the signal intensities obtained by a spin-echo sequence at different tissue temperatures tures as measured by a fibre-optic probe. T1 is linearly correlated to the tissue temperature, and P is linearly correlated to the reciprocal value of the absolute temperature. Both effects, taken together, lead to a non-linear dependency of the signal intensity on temperature. Therefore a TR leading to maximum temperature dependency of the signal intensity is calculated and used in the futher experiments. In the in vivo experiments, the lower legs of two volunteers are cooled from outside. Images are acquired with a spin-echo sequence (1.5T, TR=1200 ms, TE=10 ms). A rise in signal intensity in the muscle with falling skin temperature is observed, particularly in more peripheral muscle layers. This study shows that spin-echo sequences can be used to monitor temperature changes and temperature differences in living muscle tissue.

Keywords

Body temperature Magnetic resonance imaging Thermography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Binzoni, T., Hiltbrand, E., Kayser, B., Ferretti, G., andTerrier, F. (1995): ‘Human intramuscular temperature and heart flow transients at rest’,J. Appl. Physiol.,79, pp. 1736–1743Google Scholar
  2. Brinck, H., andWerner, J. (1994): ‘Efficiency function: improvement of classical bioheat approach’,J. Appl. Physiol.,77, pp. 1617–1622Google Scholar
  3. Brinck, H., andWerner, J. (1995): ‘Use of vascular and non-vascular models for the assessment of temperature distribution during hyperthermia’,Int. J. Hypertherm.,11, pp. 615–626Google Scholar
  4. Busch, M., Friebe, H., Schaldach, M., Koch, M., Seibel, R. M., andGroenemeyer, D. H. W. (1993): ‘High-field noninvasive thermometry sequence with SE keyhole technique’,Radiology,189, (P), p. 271Google Scholar
  5. Cline, H. E., Hynynen, K., Hardy, C. J., Watkins, R. D., Schenck, J. F., andJolesz, F. A. (1994): ‘MR temperature mapping of focused ultrasound surgery’,Magn. Reson. Med.,31, pp. 628–636Google Scholar
  6. Cooper, K. E., Edholm, O. G., andMottram, R. F. (1955): ‘The blood flow in skin and muscle of the human forearm’,J. Physiol. (Lond.) 128, pp. 258–267Google Scholar
  7. De Poorter, J., De Wagter, C., De Deene, Y., Thomsen, C., Stahlberg, F., andAchten, E. (1995): ‘Noninvasive MRI thermometry with the proton resonance frequency (PRF) method: in vivo results in human muscle’,Magn. Reson. Med.,33, pp. 74–81Google Scholar
  8. Dickinson, R. J., Hall, A. S., Hind, A. J., andYoung, I. R. (1986): ‘Measurement of changes in tissue temperature using magnetic resonance imaging’,J. Comput. Assist. Tomogr.,10, pp. 468–472Google Scholar
  9. Ducharme, M. B., andTikuisis, P. J. (1991): ‘In vivo thermal conductivity of the human forearm tissues’,J. Appl. Physiol.,70, pp. 2682–2690Google Scholar
  10. Ducharme, M. B., andTikuisis, P. (1992): ‘Forearm temperature profile during the transient phase of thermal stress’,Eur. J. Appl. Physiol.,64, pp. 395–401CrossRefGoogle Scholar
  11. Ducharme, M. B., Van Helder, W. P., andRadomski, M. W. (1991): ‘Tissue temperature profile in the human foream during thermal stress at thermal stabilty’,J. Appl. Physiol.,71, pp. 1973–1978Google Scholar
  12. Frenzel, T., Roth, K, Kossler, S., Radüchel, B., Bauer, H., Platzek, J., andWeinmann, H. J. (1996): ‘Nonivasive temperature measurementin vivo using a temperature-sensitive lanthanide complex and IH magnetic resonance spectroscopy’,Magn. Reson. Med.,35, pp. 364–369Google Scholar
  13. Kuroda, K., Nagakawa, N., andTsutsumi, S. (1990): ‘Noninvasive and tissue insenstive temperature imaging by multiple NMR parameters’,Strahlenther. Onkol.,166, pp. 521Google Scholar
  14. Mitchell, J. W., Galvez, T. L., Hengle, J., Myers, G. E., andSiebecker, K. L. (1970): ‘Thermal response of human legs during cooling’,J. Appl. Physiol.,29, pp. 859–865Google Scholar
  15. Morvan, D., Leroy-Willig, A., Malgouyres, A., Cuenod, C. A., Jehenson, P., andSyrota, A. (1993): ‘Simultaneous temperature and regional blood volume measurements in human muscle using an MRI fast diffusion technique’Magn. Reson. Med.,29, pp. 371–377Google Scholar
  16. Parker, D. L., Smith, V., Sheldon, P., Crooks, L. E., andFussell, L. (1983): ‘Temperature distribution measurements in two-dimensional NMR imaging’,Med. Phys.,10, pp. 321–325CrossRefGoogle Scholar
  17. Pennes, H. H. (1948): ‘Analysis of tissue and arterial blood temperature in resting foream’,J. Appl. Physiol.,1, pp. 93–122Google Scholar
  18. Sargeant, A. J. (1987): ‘Effect of muscle temperature on leg extension force and short-term power output in humans’,Eur. J. Appl. Physiol.,56, pp. 693–698CrossRefGoogle Scholar
  19. Toussaint, J. F., Kwong, K. K., M'Kparu, F., Weisskoff, R. M., Laraia, P. J., andKantor, H. L. (1996): ‘Perfusion changes in human skeletal muscle during reactive hyperthermia measured by echo-planar imaging’,Magn. Reson. Med.,35, pp. 62–69Google Scholar
  20. Werner, J., andWebb, P. (1993): ‘A six-cylinder model of human thermoregulation for general use on personal computers’,Ann. Physiol. Anthrop.,12, pp. 123–134Google Scholar
  21. Wolf, S. L., andBasmajian, J. V. (1973): ‘Intramuscular temperature changes deep to localized cold stimulation’,Phys. Ther.,53, pp. 1284–1288Google Scholar
  22. Young, I. R., Hand, J. W., Oatridge, A., andPrior, M. V. (1994a): ‘Modeling and observation of temperature changes in vivo using MRI’,Magn. Reson. Med.,32, pp. 358–369Google Scholar
  23. Young, I. R., Hand, J. W., Oatridge, A., Prior, M. V., andForse, G. R. (1994b): ‘Further observations on the measurement of tissue T1 to monitor temperature in vivo by MRI’,Magn. Reson. Med.,31, pp. 342–345Google Scholar
  24. Young, I. R., Hajnal, J. V., Roberts, I. R., Ling, J. X., Hill-Cottingham, R. J., Oatridge, A., andWilson, J. A. (1996): ‘An evaluation of the effects of susceptibility changes on the water chemical shift method of temperature measurement in human peripheral muscle’,Magn. Reson. Med.,36, pp. 366–374Google Scholar

Copyright information

© IFMBE 1998

Authors and Affiliations

  • E. Mietzsch
    • 1
  • M. Koch
    • 1
  • M. Schaldach
    • 1
  • J. Werner
    • 1
  • B. Bellenberg
    • 2
  • K. U. Wentz
    • 2
    • 3
  1. 1.Department of Biomedical Engineering, Medical FacultyRuhr-UniversityBochumGermany
  2. 2.Research and Development Center for MicrotherapyBochumGermany
  3. 3.Department of Radiology, Division for Magnetic ResonanceKantonsspital WinterthurWinterthurSwitzerland

Personalised recommendations