Advertisement

Journal of Radioanalytical Chemistry

, Volume 31, Issue 2, pp 389–396 | Cite as

Radiochemical determination of chromium in biological tissues by ion-exchange

  • C. Papadopoulou
  • G. Kanias
  • I. Hadzistelios
Article

Abstract

A simple ion exchange procedure has been developed for the separation of chromium from the other chemical elements in biological tissues. This procedure combined with neutron activation analysis has been applied successfully to the determination of chromium in a reference biological material. The precision was ±11%, the accuracy 3% and the sensitivity found was 10 ng with only 20 hrs irradiation at 2.8·1013 n·cm−2·sec−1 flux The main steps of the procedure are: wetdigestion of the irradiated tissue, oxidation to chromium (VI), fixation onto an anion resin in sulfate form, washing of the resin with 1N H2SO4, collection of chromium by reductive elution for counting and finally determination of the chemical yield by reactivation.

Keywords

Neutron Activation Analysis Chemical Yield Anion Exchange Resin High Acid Concentration Anion Resin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. J. M. BOWEN, Trace elements in Biochemistry, Academic Press, New York, 1966, p. 182.Google Scholar
  2. 2.
    C. D. CALNAN, Chem. Ind. London, (1971) 1482.Google Scholar
  3. 3.
    R. R. SMITH, et al., Rept. AECD-3889, 1955.Google Scholar
  4. 4.
    G. B. FASOLO, R. MALVANO, A. MASSAGLIA, Anal. Chim. Acta, 29 (1963) 569.CrossRefGoogle Scholar
  5. 5.
    K. K. S. PILLAY, C. C. THOMAS, JR., C. M. HYCHE, J. Radioanal. Chem., 20 (1974) 597.CrossRefGoogle Scholar
  6. 6.
    J. PIJCK, J. GILLIS, J. HOSTE, Intern. J. Appl. Radiation Isotopes, 10 (1961) 149.CrossRefGoogle Scholar
  7. 7.
    A. M. MULOKOZI, Analyst, 97 (1972) 820.CrossRefGoogle Scholar
  8. 8.
    A. M. MULOKOZI, Talanta, 20 (1973) 1341.CrossRefGoogle Scholar
  9. 9.
    J. S. FRITZ, J. P. SICKAFOOSE, Talanta, 19 (1972) 1573.CrossRefGoogle Scholar
  10. 10.
    G. A. STENTER, D. H. FREEMAN, Anal. Chem., 42 (1970) 1666.CrossRefGoogle Scholar
  11. 11.
    J. A. VELAUDIA, A. K. PERKONS, J. Radioanal. Chem., 20 (1974) 473.CrossRefGoogle Scholar
  12. 12.
    A. O. BRUNFELT, Anal. Chem., 39 (1967) 833.CrossRefGoogle Scholar
  13. 13.
    A. M. MULOKOSI, D. M. S. MOSHA, Talanta, 22 (1975) 239.CrossRefGoogle Scholar
  14. 14.
    D. E. LEYDEN, R. E. CHANNELL. Anal. Chem., 44 (1972) 607.CrossRefGoogle Scholar
  15. 15.
    I. HADZISTELIOS, C. PAPADOPOULOU, Talanta, 16 (1969) 337.CrossRefGoogle Scholar
  16. 16.
    F. W. E. STRELOW, C. J. C. BOTHMA, Anal. Chem., 39 (1967) 595.CrossRefGoogle Scholar
  17. 17.
    R. C. KOCH, Activation Analysis Handbook, Academic Press, New York, 1960.Google Scholar
  18. 18.
    D. F. COVELL, Anal. Chem., 31 (1959) 1785.CrossRefGoogle Scholar
  19. 19.
    H. J. M. BOWEN, Analyst 92 (1967) 124.CrossRefGoogle Scholar
  20. 20.
    C. PAPADOPOULOU, G. D. KANIAS, Acta Adriatica, (in the press).Google Scholar

Copyright information

© Akadémiai Kiadó 1976

Authors and Affiliations

  • C. Papadopoulou
    • 1
  • G. Kanias
    • 1
  • I. Hadzistelios
    • 1
  1. 1.Nuclear Research Center “Democritos”Athens(Greece)

Personalised recommendations