Journal of Radioanalytical Chemistry

, Volume 60, Issue 1, pp 121–129 | Cite as

Redox substoichiometry in isotope dilution analysis

V. The use of potassium bromate as the oxidizing agent in the analysis of metallic zinc for antimony
  • T. Kambara
  • J. Suzuki
  • H. Yoshioka
  • Y. Watanabe


Radiometric titration of antimony(III) with potassium bromate in hydrochloric acid media using the standard series method provided much valuable informations on the titration errors which depended on the concentrations of the acid and antimony(III). The hydrochloric acid concentrations between 2.5 and 3.0M were found to be optimum for the oxidation of antimony(III) amounts of 4 μg or less. Under these optimum reaction conditions the redox substoichiometric isotope dilution analysis was applied to the determination of antimony in metallic zinc and the satisfactory results were obtained, without the separation of matrix element. Also, the merits of various oxidizing agents hitherto studied for the quantitative oxidation of antimony(III) were compared and discussed.


Antimony Potassium Dichromate Metallic Zinc Isotope Dilution Analysis Hydrochloric Acid Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. KAMBARA, J. SUZUKI, H. YOSHIOKA, N. NAKAMURA, Chem. Letters, (1975) 927.Google Scholar
  2. 2.
    T. KAMBARA, J. SUZUKI, H. YOSHIOKA, N. NAKAJIMA, J. Radioanal. Chem., 43 (1978) 139.CrossRefGoogle Scholar
  3. 3.
    T. KAMBARA, J. SUZUKI, H. YOSHIOKA, Y. SHIBATA, Bunseki Kagaku, 28 (1979) 231.Google Scholar
  4. 4.
    T. KAMBARA, J. SUZUKI, H. YOSHIOKA, T. NAKAMURA, Radioisotopes, 24 (1975) 755.Google Scholar
  5. 5.
    M. ISHIBASHI, Kisoyoryo-bunsekiho (Chu-kan), Fuzanbo Co., 1950, p. 380.Google Scholar
  6. 6.
    K. H. JONES, M. KAHN, J. Inorg. Nucl. Chem., 27 (1965) 497.CrossRefGoogle Scholar
  7. 7.
    T. KAMBARA, K. HASEGAWA, H. YOSHIOKA, Y. KAMIYA, T. KOTANI, K. TABEI, J. Radioanal. Chem., 36 (1977) 87.CrossRefGoogle Scholar
  8. 8.
    N. MATSUURA, S. TOMURA, Bunseki Kagaku, 5 (1957) 205.Google Scholar
  9. 9.
    T. KAMBARA, Radioisotopes, 7 (1958) 112.Google Scholar
  10. 10.
    S. J. LYLE, A. D. SHENDRIKAR, Anal. Chim. Acta, 36 (1973) 286.CrossRefGoogle Scholar
  11. 11.
    T. KAMBARA, J. SUZUKI, H. YOSHIOKA, Y. UGAI, J. Radioanal. Chem., 59 (1980) 311.Google Scholar
  12. 12.
    N. SUZUKI, Proc. 2nd Conf. Radioisotopes (Japan), 1958, p. 115.Google Scholar
  13. 13.
    N. SUZUKI, K. KUDO, Anal. Chim. Acta, 32 (1965) 456.CrossRefGoogle Scholar
  14. 14.
    J. RUZICKA, J. STARY, Talanta, 8 (1961) 228, 535; 9 (1962) 617.CrossRefGoogle Scholar
  15. 15.
    J. RUZICKA, Coll. Czech. Chem. Comm., 30 (1965) 1808.Google Scholar
  16. 16.
    T. KAMBARA, J. SUZUKI, H. YOSHIOKA, T. NAKAMURA, Radioisotopes, 23 (1974) 211.Google Scholar
  17. 17.
    T. KAMBARA, J. SUZUKI, H. YOSHIOKA, A. ASAI, Proc. 20th Conf. Radioisotopes (Japan), 1976, p. 152.Google Scholar
  18. 18.
    H. C. BEARD, L. A. LYERLY, Anal. Chem., 33 (1961) 1781.CrossRefGoogle Scholar
  19. 19.
    B. J. HEINRICH, M. D. GRIMES, J. E. PUCKETT in I. M. KOLTHOFF, P. J. ELVING (Ed.), Treatise on analytical chemistry part II, Vol. 7, Interscience Publishers, 1961, p. 20.Google Scholar
  20. 20.
    J. M. OTTAWAY, E. BISHOP, Anal. Chim. Acta, 33 (1965) 153.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1980

Authors and Affiliations

  • T. Kambara
    • 1
  • J. Suzuki
    • 2
  • H. Yoshioka
    • 1
  • Y. Watanabe
    • 1
  1. 1.Radiochemistry Research Laboratory, School of ScienceShizuoka UniversityShizuokaJapan
  2. 2.School of EducationShizuoka UniversityShizuokaJapan

Personalised recommendations