Advertisement

The bioconversion of ethanol to biosurfactants and dye by a novel coproduction technique

  • M. Osman
  • Y. Ishigami
  • J. Someya
  • Harald B. Jensen
Article

Abstract

Rhamnolipids, multifunctional glycolipid biosurfactants, and pyocyanine, a phenazine dye, were coproduced byPseudomonas BOP100 from ethanol as the sole carbon source. Bacterial growth was dependent on the ethanol concentration in the medium. Pyocyanine was produced only during the exponential phase, while rhamnolipids production continued during the stationary phase, indicating two different ways of production for each of the products. Maximum coproduction capacity was observed at a concentration of 3% ethanol; yield of rhamnolipids was 3 g/L, and of pyocyanine 0.2 g/L. The products were characterized to confirm their chemical structures.

Key Words

Biosurfactants coproduction ethanol assimilation glycolipids phenazine pigments Pseudomonas pyocyanine rhamnolipids surfactant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reiling, H.E., U. Thanei-Wyss, L.H. Guerra-Santos, R. Hirt, O. Käppeli, and A. Fiechter,Appl. Environ. Microbiol. 51:985 (1986).Google Scholar
  2. 2.
    Higashihara, T., and A. Sato,Report of Ferment. Res. Inst. 63:65 (1985).Google Scholar
  3. 3.
    Juzlova, P., L. Martinkova, J. Lozinski, and F. Machek,Enzyme Microb. Technol. 16:996 (1994).CrossRefGoogle Scholar
  4. 4.
    Osman, M., Biosurfactants ofPseudomonas, Ph.D. Thesis, University of Bergen, 1989.Google Scholar
  5. 5.
    Robert, M., M.E. Mercadé, M.P. Bosch, J.L. Parra, M.J. Espuny, M.A. Manresa, and J. Guinea,Biotech. Lett. 12:871 (1989).CrossRefGoogle Scholar
  6. 6.
    Syldatk, C., S. Lang, U. Matulovic, and F. Wagner,Z. Naturforsch. 40:61 (1985).Google Scholar
  7. 7.
    Cooper, D.G., S.N. Liss, R. Longay, and J.E. Zajic,J. Ferment. Technol. 59:97 (1981).Google Scholar
  8. 8.
    Yamaguchi, M., A. Sato, M. Dazai, and Y. Takahara,Report Ferment. Res. Inst. 51:51 (1978).Google Scholar
  9. 9.
    Itoh, S., H. Honda, F. Tomita, and T. Suzuki,J. Antibiotics 24:855 (1971).Google Scholar
  10. 10.
    Trevelyan, W.E., and J.S. Harrison,Biochem. J. 50:298 (1952).Google Scholar
  11. 11.
    Higashihara, T., and A. Sato,Report of Ferment. Res. Inst. 63:81 (1985).Google Scholar
  12. 12.
    Heipier, H.J., and J.A.M. De Bont,Appl. Environ. Microbiol. 60:4440 (1994).Google Scholar
  13. 13.
    Buttke, T.M., and L.O. Ingram,Arch. Biochem. Biophys. 203:565 (1980).CrossRefGoogle Scholar
  14. 14.
    Dombek, K.M., and L.O. Ingram,J. Bacteriol. 157:233 (1984).Google Scholar
  15. 15.
    Ingram, L.O.,125:670 (1976).Google Scholar
  16. 16.
    Buttke, T.M., and L.O. Ingram,Biochemistry 17:637 (1978).CrossRefGoogle Scholar
  17. 17.
    Kurachi, M.,Bull. Inst. Chem. Res. Kyoto Univ. 196:163 (1958).Google Scholar

Copyright information

© AOCS Press 1996

Authors and Affiliations

  • M. Osman
    • 1
  • Y. Ishigami
    • 1
  • J. Someya
    • 2
  • Harald B. Jensen
    • 3
  1. 1.Organic Chemicals Division, Applied Interfacial ChemistryNational Institute of Materials and Chemical ResearchTsukuba, IbarakiJapan
  2. 2.Department of Applied MicrobiologyNational Institute of Life Science and Human TechnologyTsukuba, IbarakiJapan
  3. 3.Department of Biochemistry and Molecular BiologyUniversity of BergenBergenNorway

Personalised recommendations