Ether lipids based on the glyceryl ether skeleton: Present state, future potential

  • Kouichi Urata
  • Naotake Takaishi
Review

Abstract

Lipids from natural sources consist mainly of saponifiable substances, such as glycerides, along with some unsaponifiable lipids, some of which are ether lipids. Typical ether lipids are monoalkyl ethers of glycerin, also called alkyl/alkenyl glyceryl ethers. Alkyl/alkenyl glyceryl ethers have also been reported in marine organisms and in human feces. Several chemical syntheses of such ether lipids have been reported. Typical examples are alkyl glyceryl ether formation by the addition reaction of alkyl glycidyl ether and the telomerization reaction of butadiene with glycerin and a transition metal catalyst. Characteristic chemical structures, such as terpene alkyl glyceryl ethers, archaebacterial macrocyclic ether lipids, and glyceryl ethers of condensed cyclic planar molecules, have been obtained as well. Over the past few decades, industry has shown much interest in the chemistry and application of highly branched fatty acids. For example, isostearyl glyceryl ether (GE-IS) with methyl branching in the middle chain was already known, but it is now prepared at an industrial scale by proprietary alkyl glycidyl ether methods. The characteristic behavior of GE-IS toward water, such as formation of water-in-oil emulsions containing large amounts of water and of liquid crystals, has made it applicable for use in hair and skin-care cosmetics. Based on these studies and considerations, glyceryl ether lipids, which are rarely investigated, may become one of the most important and useful lipids in the industry.

Key Words

Ether lipids GE-IS glyceryl ether glycidyl ether isostearic acid isostearyl glyceryl ether liquid crystal W/O emulsion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mangold, H.K., Synthesis and Biosynthesis of Alkoxylipids,Angew. Chem. Int. Engl. 18:493–503 (1979).CrossRefGoogle Scholar
  2. 2.
    Weber, N., Preparation of Biological Active Lipids by Semi-Synthesis and Biotransformation,Fat Sci. Technol. 94:546–554 (1992).Google Scholar
  3. 3.
    Krog, N.J., Food Emulsifiers and Their Chemical and Physical Properties, inFood Emulsion, edited by K. Larsson and S.E. Friberg, Marcel Dekker, Inc. New York, 1990, pp. 127–180.Google Scholar
  4. 4.
    Mangold, H.K., and N. Weber, Biosynthesis and Biotransformation of Ether Lipids,Lipids 22:789–799 (1987).Google Scholar
  5. 5.
    Mangold, H.K., Ether Lipids: Relic of the Past and Promise for the Future,Riv. Ital. Sostanze Grasse 65:349–360 (1988).Google Scholar
  6. 6.
    Mangold, H.K., and F. Paltauf (eds.),Ether Lipids: Biochemical and Biomedical Aspects, Academic Press, New York, 1983.Google Scholar
  7. 7.
    Prinsep, M.R., J.W. Blunt, and M.H.G. Munro, A New Sterol Sulfate from the Marine SpongeStylopus Australis, J. Natl. Prod. 52:657–659 (1989).CrossRefGoogle Scholar
  8. 8.
    Smith, G.M., and C. Djerassi, Phospholipid Studies of Marine Organisms: 14. Ether Lipids of the SpongeTethya aurantia, Lipids 22:236–240 (1987).Google Scholar
  9. 9.
    Schmitz, F.J., D.J. Vanderah, K.H. Hollenbeak, C.E.L. Enwall, Y. Gopichand, P.K. SenGupta, M.B. Hossain, and D. van der Helm, Metabolites from the Marine SpongeTedania ignis. A New Atisanediol and Several Known Diketo piperazines,J. Org. Chem. 48:3941–3945 (1983).CrossRefGoogle Scholar
  10. 10.
    Cardellina II, J.H., C.J. Graden, B.J. Greer, and J.R. Kern, 17Z-Tetracosenyl I-Glycerol Ether from the SpongesCinachyra alloclada andUlosa ruetzleri, Lipids 18:107–110 (1983).Google Scholar
  11. 11.
    Myers, B.L., and P. Crews, Chiral Ether Glycerides from a Marine Sponge,J. Org. Chem. 48:3583–3585 (1983).CrossRefGoogle Scholar
  12. 12.
    Quijano, L., C. Francisco, N. Irma, G. Patricia, and R. Tirso, Alkyl Glycerol Monoethers in the Marine SpongeDesmapsamma anchorata, Lipids 29:731–734 (1994).Google Scholar
  13. 13.
    Carballeria, N.M., and M.E. Maldonado, 7-Methyl-8-Hexadecenoic Acid: A Novel Fatty Acid from the Marine SpongeDesmapsama anchorata, 23:690–693 (1988).Google Scholar
  14. 14.
    Urata, K., S. Yano, A. Kawamata, N. Takaishi, and Y. Inamoto, A Convenient Synthesis of Long-Chain 1-O-Alkyl Glyceryl Ethers,J. Am. Oil Chem. Soc. 65:1299–1302 (1988).Google Scholar
  15. 15.
    Urata, K., and N. Takaishi, The Alkyl Glycidyl Ether as Synthetic Building Blocks,71:1027–1033 (1994).Google Scholar
  16. 16.
    Osberghaus, R., and W. Stein, Process for the Manufacture of Vicinal Glycols, U.S. Patent 3933923 (1976).Google Scholar
  17. 17.
    Urata, K., and N. Takaishi, Applications of Phase-Transfer Catalytic Reactions to Fatty Acids and Their Derivatives: Present State and Future Potential,J. Am. Oil Chem. Soc. 73:831–839 (1996).Google Scholar
  18. 18.
    Gruber, B., B. Fabry, B. Giesen, R. Müller, and F. Wangemann, Chemistry and Properties of Glyceryl Ether Sulfates,Tenside Surf. Det. 30:422–426 (1993).Google Scholar
  19. 19.
    Bruce, A.R., A.J. Varghese, R. Furrer, and P.C. Land, Fecapentaenes as Mutagens, inOrigins of Human Cancer, edited by H.N. Hiatt, J.D. Watson, and J.A. Winsten, Cold Spring Harbor, New York, 1977, pp. 1641–1645.Google Scholar
  20. 20.
    Baptista, J., J.J. Krepinsky, and H.R. Pfaendler, Natural Fecapentaene-14 and One Fecapentaene-12 Component Are All-trans Stereoisomers,Angew. Chem. Int. Ed. Engl. 26:1186–1187 (1987).CrossRefGoogle Scholar
  21. 21.
    De Wit, P.P., T.A.M. Van Schaik, and A. Van der Gen, A Convenient Synthesis of Fecapentaene-12 by the Horner-Wittig Reaction,J.R. Neth. Chem. Soc. 103:369–370 (1984).Google Scholar
  22. 22.
    Humphrey, I.W., Process for the Preparation of Terpene Ethers, DE Patent 711916 (1941).Google Scholar
  23. 23.
    Joo, C.N., T. Shier, and M. Kates, Characterization and Synthesis of Mono- and Diphytanyl Ethers of Glycerol,J. Lipid. Res. 9:782–788 (1968).Google Scholar
  24. 24.
    Kates, M., B. Palameta, and L.S. Yengoyan, Aliphatic Diether Analogs of Glyceride-Derived Lipids. II. Synthesis of Naturally Occurring L-2,3-Di-O-3′,7′,-11′,15′-Tetramethylhexadecyl Glycerol and Its D Isomer,Biochemistry 4:1595–1599 (1965).CrossRefGoogle Scholar
  25. 25.
    Urata, K., N. Takaishi, and Y. Suzuki, Glyceryl Ethers of Terpene Alcohol and Cosmetics Containing the Same, Jpn. Tokkyo Koho 91-31187 (1991).Google Scholar
  26. 26.
    Urata, K., N. Takaishi, and Y. Suzuki, Diglycerin Alkyl Ether of Terpene Alcohol and Cosmetics Containing the Same, Jpn. Tokkyo Koho 91-31188 (1991).Google Scholar
  27. 27.
    Urata, K., N. Takaishi, and Y. Suzuki, Iso-Diglycerin Alkyl Ether of Terpene Alcohol and Cosmetics Containing the Same, Jpn. Tokkyo Koho 91-31189 (1991).Google Scholar
  28. 28.
    Woese, C.R., O. Kandler, and M.L. Wheelis, Towards a Natural System of Organisms: Proposal for the Domains Archaea, Bacteria, and Eucarya,Proc. Natl. Acad. Sci. USA 87:4576–4579 (1990).CrossRefGoogle Scholar
  29. 29.
    Eguchi, T., T. Terachi, and K. Kakinuma, The First Synthesis of an Arcaebacterial 36-Membered Macrocyclic Diether Lipid.J. Chem. Soc., Chem. Commun.:137–138 (1994).Google Scholar
  30. 30.
    Moss, R.A., G. Li, and J.-M. Li, Enhanced Dynamic Stability of Macrocyclic and Bolaamphiphilic Macrocyclic Lipids in Liposomes,J. Am. Chem. Soc. 116:805–806 (1994).CrossRefGoogle Scholar
  31. 31.
    Escamilla, G.H., and G.R. Newkome, Bolaamphiphiles: From Golf Balls to Fibers,Angew. Chem. Int. Ed. Eng. 33:1937–1940 (1994).CrossRefGoogle Scholar
  32. 32.
    Yano, S., and A. Kawamata, Glyceryl Ether Derivative and the Corresponding Skin External Agents, Jpn. Kokai Tokkyo Koho 2-311407 (1990).Google Scholar
  33. 33.
    Yano, S., and A. Kawamata, Glyceryl Ether Derivative and Skin External Preparation, Jpn. Kokai Tokkyo Koho 2-104546 (1990).Google Scholar
  34. 34.
    Takaishi, N., K. Urata, Y. Inamoto, H. Tsutsumi, and J. Kawano, Alpha-Mono (methyl-branched alkyl) Glyceryl Ethers Useful as Stable Emulsifiers for Skin Care Compositions, EP Patent 25302B (1983).Google Scholar
  35. 35.
    Mcmahon, D.H., and E.P. Crowell, Characterization of Products from Clay Catalyzed Polymerization of Tall Oil Fatty Acids,J. Am. Oil Chem. Soc. 51:522–527 (1974).Google Scholar
  36. 36.
    Den Otter, M.J.A.M., The Dimerization of Oleic Acid with a Montmorillonite Catalyst I,Fette Seifen Anstrichm. 72:667–673 (1970).CrossRefGoogle Scholar
  37. 37.
    Den Otter, M.J.A.M., The Dimerization of Oleic Acid with a Montmorillonite Catalyst II,72:875–883 (1970).CrossRefGoogle Scholar
  38. 38.
    Den Otter, M.J.A.M., The Dimerization of Oleic Acid with a Montmorillonite Catalyst III,72:1056–1066 (1970).CrossRefGoogle Scholar
  39. 39.
    Haase, K.D., G. Taylor, and P.A. Smith, Isostearic Acids for Cosmetic Applications,Seifen Öle Fette Wachse 114:231–233 (1988).Google Scholar
  40. 40.
    Link, W., and G. Spiteller, Products of the Dimerization of Unsaturated Fatty Acids I: The Fraction of Monomers Obtained by Dimerization of Pure Oleic Acid,Fat. Sci. Technol. 92:19–25 (1990).Google Scholar
  41. 41.
    Simon, E., W. Kern, and G. Spiteller, Localization of the Branch in Monomethyl Branched Fatty Acids.,Biomed. Envirn. Mass. Spectrom. 19:129–136 (1990).CrossRefGoogle Scholar
  42. 42.
    Tsutsumi, H., and A. Ishida, Solution Behavior and Liquid Crystalline Phases of α-Monoalkyl Glyceryl Ether/Water System,Yukagaku 33:270–276 (1984).Google Scholar
  43. 43.
    Suzuki, Y., and H. Tsutsumi, Emulsifying Characteristics of α-Monoalkyl Glyceryl Ether.,36: 588–593 (1987).Google Scholar
  44. 44.
    Tsutsumi, H., and K. Shinoda, Characteristics of Nonionic Surfactants with Hydroxyl Groups as the Hydrophilic Moiety.,43:395–402 (1994).Google Scholar
  45. 45.
    Jeffrey, G.A., and L.M. Wingert, Carbohydrate Liquid Crystals,Liq. Cryst. 12:179–202 (1992).Google Scholar
  46. 46.
    Joachimi, D., C. Tschierske, H. Müller, J.H. Wendorff, L. Schneider, a and R. Kleppinger, Molecular Self-Organization of Amphotropic Cyanobiphenyl Mesogens,Angew. Chem. Int. Ed. Engl. 32:1165–1167 (1993).CrossRefGoogle Scholar
  47. 47.
    Shioya, Y., Y., Suzuki, and H. Tsutsumi, Electron Spin Resonance Analysis for the Orientation and Dynamic Behavior of Nitroxy Radicals Modified by Stearic Acid in the Lamellar Liquid Crystals,Yukagaku 43:1081–1085 (1994).Google Scholar
  48. 48.
    Jensen, O.N., and J. Müller, Dimer and Trimer Fatty Acids in Feed Fats Characterized by HPLC-GPC and MS,Fette Seifen Anstrichm. 88:352–357 (1986).CrossRefGoogle Scholar
  49. 49.
    Christopoulou, C.N., and E.G. Perkins, Dimer Acids: Synthesis and Mass Spectrometry of the Tetrahydroxy, Dihydroxy and Diketo Dimers of Methyl Stearate,J. Am. Oil Chem. Soc. 66:1344–1352 (1989).Google Scholar
  50. 50.
    Adelhardt, R., W. Link, and G. Spiteller, Products of Dimerization of Unsaturated Fatty Acids V: The Aromatic Fraction of Dimeric Acids,Fat Sci. Technol. 93:277–284 (1991).Google Scholar
  51. 51.
    Fuhrhop, J.H., W. Kaufmann, and F. Schambil, Vesicles from Dimer Acid and Its Derivatives,Langmuir 1:387–390 (1985).CrossRefGoogle Scholar
  52. 52.
    Bosch, P., J.L. Parra, and A. de la Maza, Assembly Properties of Bolaamphiphiles from Dimeric Acids,Angew. Chem. Int. Ed. Engl. 33:2078–2080 (1994).CrossRefGoogle Scholar
  53. 53.
    Fisher, P., H. Rehage, and B. Grüning, Rheological Properties of Dimer Acid Betaine Solutions,Tenside Surf. Der. 31:99–108 (1994).Google Scholar
  54. 54.
    Pillai, S.M., and M. Ravindranathan, Oligomerization of Dec-1-Ene over Montmorillonite Clay Catalysts,J. Chem. Soc., Chem. Commun.: 1813–1814 (1994).Google Scholar
  55. 55.
    Burg, D.A., and R. Kleiman, Preparation of Meadowfoam Dimer Acids and Dimer Esters, and Their Use as Lubricants,J. Am. Oil Chem. Soc. 68:600–603 (1991).Google Scholar
  56. 56.
    Vail, R.E., and R.H. Boehringer, Comparison of “Synthetic Esters of 36 and 54 Carbon Polycarboxylic Acids and Mono Functional Alcohols, and 18 Carbon Monocarboxylic Acids and Polyols” with Naturally Occurring Glycerides for Industrial Lubricant Applications,J. Am. Soc. Lub. Engin 25:205–209 (1969).Google Scholar
  57. 57.
    Daute, P., R. Grützmacher, R. Hüfer, and A. Westfechtel, Saponification Resistant Polyols for Polyurethane Applications Based on Oleochemical Raw Materials,Fat Sci. Technol. 95:91–94 (1993).Google Scholar
  58. 58.
    O'lenick Jr., A.J., and J.K. Parkinson, A Comparison of the Rates of Esterification of Some Hydroxy Compounds,J. Soc. Cosmet. Chem. 45:247–256 (1994).Google Scholar
  59. 59.
    Takaishi, N., K. Urata, and Y. Inamoto, Preparation Method for α-Monoalkyl Glyceryl Ethers, DE Patent 3110762C (1992).Google Scholar
  60. 60.
    Cusack, N.J., Platelet-Activating Factor,Nature 285:193 (1981).CrossRefGoogle Scholar
  61. 61.
    Demopoulos, C.A., R.N. Pinckard, and C.J. Hanahan, Platelet-Activating Factor,J. Bio. Chem. 254:9355–9358 (1979).Google Scholar
  62. 62.
    Chignard, M., J.P. Le Couedic, M. Tence, B.B. Vorgaftig, and J. Benveniste, The Role of Platelet-Activating Factor in Platelet Aggregation,Nature 279:799–800 (1979).CrossRefGoogle Scholar
  63. 63.
    van Boeckel, C.A.A., G.A. van der Marel, P. Westerduin, and J.H. van Boom, Synthesis of 2-O-Acetyl-3-O-Hexadecyl-sn-1-Glycerylphosphorylcholine, The Enantiomer of Platelet Activating Factor (PAF),Synthesis: 399–402 (1982).Google Scholar
  64. 64.
    Hirth, G., and R. Barner, Synthesis of Glyceryletherphosphatides, 1st Communication. Preparation of 1-O-Octadecyl-2-O-Acetyl-sn-Glyceryl-3-Phosphorylcholine (“Platelet Activating Factor’), of Its Enantiomer and of Some Analogous Compounds,Helv. Chim. Acta 65:1059–1084 (1982).CrossRefGoogle Scholar
  65. 65.
    Hirth, G., H. Saroka, W. Bannwarth, and R. Barner, Synthesis of Glyceryletherphosphatides, 2nd Communication. Preparation of 2-O-Acetyl-1-O-[(Z)-9-Octadecenylün-sn-Glyceryl-3-Phosphorylcholine (‘Oleyl-PAF’), of Its Enantiomer and Some Analogous Unsaturated Compounds,66:1210–1240 (1983).CrossRefGoogle Scholar
  66. 66.
    Tirri, L., P.C. Schmidt, R.K. Pullarkat, and H. Brockerhoff, Studies on the Hydrogen Belts of Membranes: II. Nonelectrolyte Permeability of Liposomes of Diester, Diether and Dialkyl Phosphatidylcholine and Cholesterol,Lipids 12:863–868 (1977).Google Scholar
  67. 67.
    Wong, P.T.T., and H.H. Mantsch, High-Pressure Infrared Spectroscopic Evidence of Water Binding Sites in 1,2-Diacyl Phospholipids.Chem. Phys. Lipids 46:213–224 (1988).CrossRefGoogle Scholar
  68. 68.
    Ruocco, M.J., D.J. Siminovitch, and R.G. Griffin, Comparative Study of the Gel Phases of Ether- and Ester-Linked Phosphatidylcholines,Biochemistry 24:2406–2411 (1985).CrossRefGoogle Scholar
  69. 69.
    Tanaka, R., A. Hashimoto, N. Noda, and K. Miyahara, Two 1-Alkyl-2-Acyl Choline Glycerophospholipids Having and Arachidonoyl or Eicosapentaenoyl Group, from the Clam Warm (Marphysa sanguinea),Chem. Pharm. Bull. 43:156–158 (1995).Google Scholar
  70. 70.
    Futami, T., A. Kawamata, K. Urata, and N. Takaishi, New Anti-inflammatory Analgesic Phospholipid Derivatives Prepared from Glycerin Dialkyl Ether, Jpn. Tokkyo Koho 92-24354 (1992).Google Scholar
  71. 71.
    Berdel, W.E., Ether Lipids and Analogs in Experimental Cancer Therapy. A Brief Review of the Munich Experience,Lipids 22:970–973 (1987).Google Scholar
  72. 72.
    Zeisig, R., D. Arndt, and H. Brachwitz, Ether Lipides—Synthesis and Tumortherapeutic Applicability,Pharmazie 45:809–818 (1990).Google Scholar
  73. 73.
    Westphal, O., Antitumoral Activity of Ether Lipids,Naturwissens. Rundschau 44:58–61 (1991).Google Scholar
  74. 74.
    Kovar, A., C. Grauer, and W. Zimmermann, Ether Lipids—A New Class of Cytotoxic Agents,Pharmazie 49:417–419 (1994).Google Scholar
  75. 75.
    Ladika, M., T.E. Fisk, W.W. Wu, and S.D. Jons, High-Stability Liposomes from Macrocyclic Diyne Phospholipids,J. Am. Chem. Soc. 116:12093–12094 (1994).CrossRefGoogle Scholar
  76. 76.
    Suzuki, Y., and H. Tsutsumi, Surfactants with Hydroxyl Groups as Hydrophilic Portion Solution Behavior of Alkyl Diglyceryl Ethers in Water,Yukagaku 36:947–953 (1987).Google Scholar
  77. 77.
    Prinz, H., L. Six, K.-P. Ruess, and M. Liefländer, Stereoselective Synthesis of Long-Chain 1-O-(β-d-maltosyl)-3-O-Alkyl-sn-Glycerols,Libigs Ann. Chem.: 217–225 (1985).Google Scholar
  78. 78.
    Zhu, Y., A. Masuyama, Y. Kirito, M. Okahara, and M.J. Rosen, Preparation and Properties of Glycerol-Based Double-or Triple-Chain Surfactants with Two Hydrophilic Ionic Groups,J. Am. Oil Chem. Soc. 69:626–632 (1992).Google Scholar
  79. 79.
    Masuyama, A., and Y. Nakatsuji, Some New Modifications of the Structures of Surfactants,Hyomen 32:536–544 (1994).Google Scholar
  80. 80.
    Masuyama, A., M. Yokota, Y. Zhu, T. Kida, and Y. Nakatsuji, Unique Interfacial Properties of a Homologous Series of Novel Triple-Chain Amohiphiles Bearing Three Anionic Head Groups Derived from 1,1,1-Tris(hydroxymethyl)ethane,J. Chem. Soc. Chem. Commun.: 1435–1436 (1994).Google Scholar
  81. 81.
    Gao, T., and M.J. Rosen, Dynamic Surface Tension of Aqueous Surfactant Solutions. 6. Compounds Containing Two Hydrophilic Head Groups and Two or Three Hydrophobic Groups and Their Mixtures with Other Surfactants,J. Am. Oil Chem. Soc. 71:771–776 (1994).Google Scholar
  82. 82.
    Moss, R.A., S. Ganguli, Y. Okumura, and T. Fujita, Relation of Surfactant Monomer Structure to Flip-Flop Dynamic in Surface-Differentiated Synthetic Bilayer Membranes,J. Am. Chem. Soc. 112:6391–6392 (1990).CrossRefGoogle Scholar
  83. 83.
    Moss, R.A., J.-M. Li, and A.T. Kotchevar, Amido- and Carbamoyl-Linked Pseudoglyceryl Lipids and Liposomal Dynamics,Langmuir 10:3380–3382 (1994).CrossRefGoogle Scholar
  84. 84.
    Ciba Geigy AG, Nucleic Acids and Oligo-Nucleoside Having 2′-Ether Linkage, Jpn. Kokai Tokkyo Koho 07-2889 (1995).Google Scholar
  85. 85.
    Okahara, M., and A. Masuyama, Surfactants with Complexing ability,Yukagaku 39:710–716 (1990).Google Scholar
  86. 86.
    Mangold, H.K., Ether Lipids in the Diet of Humans and Animals, inEther Lipids: Biochem. Biomed. Aspects, edited by H.K. Mangold and F. Paltauf, Academic Press, New York, 1983, pp. 231–238.Google Scholar
  87. 87.
    Das, A.K., R.D. Holmes, G.N. Wilson, and A.K. Hajra, Dietary Ether Lipid Incorporation into Tissue Plasmalogens of Humana and Rodents,Lipids 27:401–405 (1992).Google Scholar
  88. 88.
    Aust, L., J. Brückner, J. Proll, R. Noack, and G. Mieth, Action of Sucrose Polyesters on Lipid Metabolism in Rats,Ann. Nutr. Metab., 25:255–261 (1981).CrossRefGoogle Scholar
  89. 89.
    Mattson, F.H., R.J. Jandacek, and M.R. Webb, The Effect of a Nonabsorbable Lipid, Sucrose Polyester, on the Absorption of Dietary Cholesterol by the Rat,J. Nutr. 106:747–752 (1976).Google Scholar
  90. 90.
    Gulik, A., V. Luzatti, M. de Rosa, and A. Gambacorta, Biradical Tetraether Lipids from Thermoacidophilic Archaebacteria,Adv. Exp. Med. Biol. 238:37–45 (1988).Google Scholar
  91. 91.
    Stekar, J., G. Nössner, B. Kutscher, J. Engel, and P. Hilgard, Synthesis, Antitumor Activity, and Tolerability of Phospholipids Containing Nitrogen Homologues,Angew. Chem. Int. Ed. Engl. 34:238–240 (1995).CrossRefGoogle Scholar
  92. 92.
    Suzuki, Y., and H. Tsutsumi, Solution Behaviour and Coloration Phenomena of Diglycerol Alkyl Ether/Water Systems,Yukagaku 33:786–792 (1984).Google Scholar

Copyright information

© AOCS Press 1996

Authors and Affiliations

  • Kouichi Urata
    • 1
  • Naotake Takaishi
    • 2
  1. 1.Tochigi Research LaboratoryKao CorporationTochigiJapan
  2. 2.Tokyo Research LaboratoryKao CorporationTokyoJapan

Personalised recommendations