Abstract
The necessary criteria are pointed out for the exisence of Hamiltonian and bi-Hamiltonian non-degenerate structures for a nonlinear system of partial differential equations of first order. The results are formulated in terms of the new invariants of the intrinsic geometry, introduced in this paper, connected with the Nijenhuis and Haantjes tensors of a (1,1) tensor field.
Similar content being viewed by others
References
Riemann, G.F.B.: Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite. Abhandl. Konigl. Ges. Wiss. Gőttingen, v.8, 1860.
Courant, R., Hilbert, D.: Methods of mathematical physics, v. II. New York: Interscience Publishers, 1962
Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math.7, 159–193 (1954)
Glimm, J.: Solutions in the large for nonlinear hyperbolic systems of equations. Commun. Pure Appl. Math.18, 697–715 (1965)
Nijenhuis, A.:X n-1 -forming sets of eigenvectors. Proc. Kon. Ned. Akad. Amsterdam54, 200–212 (1951)
Haantjes, J.: OnX m -forming sets of eigenvectors. Proc. Kon. Ned. Akad. Amsterdam58, 158–162 (1955)
Dubrovin, B.A., Novikov, S.P.: On Poisson brackets of hydrodynamic type. Sov. Math. Dokl.30, 651–654 (1984)
Novikov, S.P.: The geometry of conservative systems of hydrodynamic type. The method of averaging for field-theoretical systems. Russ. Math. Surv.40, N4, 85–98 (1985)
Dubrovin, B.A., Novikov, S.P.: Hydrodynamics of weakly deformed solition lattices. Differential geometry and Hamiltonian theory. Russ. Math. Surv.44, N6, 35–124 (1989)
Magri, F.: A simple model of an integrable Hamiltonian system. J. Math. Phys.19, 1156–1162 (1978)
Bogoyavlenskij, O.I.: Existence of Riemann invariants and Hamiltonian structures. C.R. Math. Rep. Acad. Sci. Canada15, 143–148 (1993)
Benney, D.J.: Some properties of long non-linear waves. Stud. Appl. Math.52, 45–50 (1973)
Whitham, G.B.: Non-linear dispersive waves. Proc. Royal Soc. Lond. Ser. A139, 283–291 (1965)
Ercolani, N., Forest, M.G., McLaughlin, D.W., Montgomery, R.: Hamiltonian structure of the modulation equations of a Sine-Gordon wavetrain. Duke Math. J.55, 949–983 (1987)
Flaschka, H., Forest, M.G., McLaughlin, D.W.: Multiphase averaging and the inverse spectral solution of the Korteweg-de Vries equation. Commun. Pure Appl. Math.33, 739–784 (1980)
Stone, A.P.: Generalized conservation laws. Proc. of Am. Math. Soc.18, 868–873 (1967)
Weyl, H.: The classcal groups, their invariants and representations. Princeton, NJ.: Princeton University Press, 1946
Eisenhart, L.P.: Riemannian geometry. Princeton, NJ: Princeton University Press, 1964
Tsarev, S.P.: On Poisson brackets and Hamiltonian systems of hydrodynamic type. Sov. Math. Dokl.31, 488–491 (1985)
Mokhov, O.I., Ferapontov, E.V.: Non-local Hamiltonian operators of hydrodynamic type related to metrices of constant curvature. Russ. Math. Surv.45, N2, 218–219 (1990)
Author information
Authors and Affiliations
Additional information
Communicated by H. Araki
Supported by NSERC grant OGPIN 337
Rights and permissions
About this article
Cite this article
Bogoyavlenskij, O.I. Necessary conditions for existence of non-degenerate Hamiltonian structures. Commun.Math. Phys. 182, 253–289 (1996). https://doi.org/10.1007/BF02517890
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF02517890