Journal of Radioanalytical Chemistry

, Volume 32, Issue 1, pp 195–205 | Cite as

Oxygen and nitrogen in coal by instrumental neutron activation analysis

Implications for conversion
  • W. D. James
  • W. D. Ehmann
  • C. E. Hamrin
  • L. L. Chyi
Special Developments and Applications of Neutron Activation Analysis


The feasibility of using fast neutron (14 MeV) activation analysis techniques for the determination of oxygen and nitrogen in coal has been investigated. Conditions that favor instrumental neutron activation analysis (INAA) include the absence of problems associated with sample dissolution and the capability of extremely rapid analyses as compared to older techniques such as the Kjeldahl method for nitrogen. Most previous oxygen determinations have been by difference after major component analyses. In the present study, oxygen was determined in sized coal and its low temperature ash (LTA) with the difference representing the organic oxygen content. Both the oxygen and nitrogen analyses employ a multiscaling technique with the former based on the16O(n, p)16N reaction, while the latter utilizes the annihilation radiation produced by the product of the14N(n, 2n)13N reaction. The high-energy gamma-radiation associated with the decay of16N was essentially free of spectral interferences for coal analysis, although fluorine could cause a primary interference if the F/O ratio exceeds 0.02. In the nitrogen work, experiments were performed to determine correction factors to account for the effects of the12C(p, γ)13N and13C(p, n)13N “knock-on” reactions and the39K(n, 2n)38K reaction which produce interfering β+ emitting radionuclides. Data are presented for oxygen in Western Kentucky No. 9 and No. 11 coal and coal ash and for nitrogen in eleven different coals.


Gasification Liquefaction Instrumental Neutron Activation Analysis Coal Sample ASTM Method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. W. VAN KREVELEN, Coal, Elsevier, Amsterdam, 1961, p. 113.Google Scholar
  2. 2.
    P. H. GIVEN, Coal Science, Advances in Chemistry Series, No. 55, Am. Chem. Soc., Washington, D. C., 1966, p. 192.Google Scholar
  3. 3.
    R. H. ESSENHIGH, J. B. HOWARD, Combustion Phenomena in Coal Dusts and the Two-Component Hypothesis of Coal Constitution, Penn. State Univ. Studies No. 31, 1971, p. 17.Google Scholar
  4. 4.
    J. D. BLACKWOOD, D. J. McCARTY, Aust. J. Chem., 19 (1966) 797.Google Scholar
  5. 5.
    T. J. BIRCH, J. D. BLACKWOOD, Nature, 20 (1964) 797.CrossRefGoogle Scholar
  6. 6.
    C. A. SEYLER, Proc. S. Wales Inst., Engrs, 63 (1948) 213.Google Scholar
  7. 7.
    W. FRANCIS, Coal, Arnold, London, 1954.Google Scholar
  8. 8.
    K. KINSON, C. B. BELCHER, Fuel, 54 (1975) 205.CrossRefGoogle Scholar
  9. 9.
    H. H. LOWRY (Ed.), Chemistry of Coal Utilization, Supplementary Volume, Wiley, New York, 1963, p. 219.Google Scholar
  10. 10.
    ASTM, Pt. 19 D2492-68, 1969.Google Scholar
  11. 11.
    C. E. HAMRIN Jr., P. S. MAA, L. L. CHYI, W. D. EHMANN, Fuel, 54 (1975) 70.CrossRefGoogle Scholar
  12. 12.
    H. J. GLUSKOTER, Fuel, 44 (1965) 285.Google Scholar
  13. 13.
    D. E. WOOD, P. L. JESSEN, R. E. JONES, 52nd Annual Meeting of the American Association of Cereal Chemists, Los Angeles, Calif., April, 1967.Google Scholar
  14. 14.
    H. SEVINLI, H. OZYOL, E. BARUTCUGIL, S. DINCER, Turk. A. E. C., Tech. J., 1 (1974) 15.Google Scholar
  15. 15.
    C. L. SYA, M. S. Thesis, University of Kentucky, 1973.Google Scholar
  16. 16.
    S. SEMEL, S. HELF, J. Radioanal. Chem., 11 (1972) 91.CrossRefGoogle Scholar
  17. 17.
    D. M. BIBBY, H. M. CHAMPION, Radiochem. Radioanal. Letters, 18 (1974) 177.Google Scholar
  18. 18.
    J. W. MORGAN, W. D. EHMANN, Anal. Chim. Acta, 49 (1970) 287.CrossRefGoogle Scholar
  19. 19.
    J. R. VOGT, W. D. EHMANN, Proc. 1965 Intern. Conf. Modern Trends in Activation Analysis, Texas A and M Press, 1966, p. 82.Google Scholar
  20. 20.
    R. R. RUCH, H. J. GLUSKOTER, N. F. SHIMP, Illinois Geol. Survey, Environmental Geology Note, 1974, p. 18.Google Scholar
  21. 21.
    C. E. MELTON, A. A. GIARDINI, Fuel, 54 (1975) 162.CrossRefGoogle Scholar
  22. 22.
    A. A. JONKE, private communication, 1975.Google Scholar
  23. 23.
    D. H. FINE, S. M. SLATER, A. F. SAROFIM, G. C. WILLIAMS, Fuel, 53 (1974) 120.CrossRefGoogle Scholar
  24. 24.
    A. V. SLACK, Sulfur Dioxide Removal from Waste Gases, Pollution Control Review, 1971.Google Scholar

Copyright information

© Akadémiai Kiadó 1976

Authors and Affiliations

  • W. D. James
    • 1
  • W. D. Ehmann
    • 1
  • C. E. Hamrin
    • 2
  • L. L. Chyi
    • 3
  1. 1.Department of ChemistryUniversity of KentuckyLexington(USA)
  2. 2.Department of Chemical EngineeringUniversity of KentuckyLexington(USA)
  3. 3.Institute of Mining and Minerals ResearchUniversity of KentuckyLexington(USA)

Personalised recommendations