Journal of Radioanalytical Chemistry

, Volume 39, Issue 1–2, pp 223–237 | Cite as

Model uncertainty and bias in the evaluation of nuclear spectra

I. The smoothest consistent baseline
  • L. A. Currie
Accuracy and Precision


Unbiased analysis of γ-ray and X-ray spectra is impossible in the absence of a complete physical or mathematical model. Partial model knowledge may be supplemented by simple assumptions or by various heuristic schemes in order to effect a solution. Assessment of limits for bias, based upon the properties of the surrogate model and physical-chemical knowledge of the measurement system, is the principal target of this work. The Smoothest Consistent Baseline (SCB) approach has been introduced in an attempt to reduce assumptions and minimize bias in the extraction of a spectral peak from a baseline of uncertain shape. The bias matrix, which results directly from the numerical analysis, permits limiting baseline profiles to be simply converted into bounds for systematic model error.


Model Uncertainty Counting Statistic True Baseline Bias Vector Linear Baseline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. OP DE BEECK, At. Energy Rev., 13 (1975) 743.Google Scholar
  2. 2.
    P. QUITTNER, Gamma-Ray Spectroscopy—with Special References to Computer and Detector Techniques, Hilger, London, Akadémiai Kiadó, Budapest, 1972.Google Scholar
  3. 3.
    H. P. YULE, Anal. Chem., 44 (1972) 1245.CrossRefGoogle Scholar
  4. 4.
    M. A. HOGAN, S. YAMAMOTO, D. F. COVELL, Nucl. Instr. Methods, 80 (1970) 61.CrossRefGoogle Scholar
  5. 5.
    M. H. YOUNG, N. S. SINGHAL, Nucl. Instr. Methods, 45 (1966) 287.CrossRefGoogle Scholar
  6. 6.
    L. A. CURRIE, in Modern Trends in Activation Analysis, J. R. DeVOE, P. D. LaFLEUR (Eds), Vol. 2 US NBS Spec. Publ. 312, 1969, p. 1215.Google Scholar
  7. 7.
    L. A. CURRIE, Anal. Letters, 4 (1971) 873.Google Scholar
  8. 8.
    H. P. YULE, in Modern Trends in Activation Analysis J. R. DeVOE, P. D. LaFLEUR (Eds), Vol. 2 US NBS Spec. Publ. 312, 1969, p. 1155.Google Scholar
  9. 9.
    M. A. MARISCOTTI, Nucl. Instr. Methods, 50 (1967) 309.CrossRefGoogle Scholar
  10. 10.
    P. QUITTNER, Anal. Chem., 41 (1969) 1504.CrossRefGoogle Scholar
  11. 11.
    P. A. BAEDECKER, Anal. Chem., 43 (1971) 405.CrossRefGoogle Scholar
  12. 12.
    S. STERLINSKI, Anal. Chem., 40 (1968) 1995.CrossRefGoogle Scholar
  13. 13.
    J. HERTOGEN, J. De DONDER, R. GIJBELS., Nucl Instr. Methods, 115 (1974) 197.CrossRefGoogle Scholar
  14. 14.
    R. GUNNICK, J. B. NIDAY, Rep. UCRL-51061, 1, 1972.Google Scholar
  15. 15.
    F. H. SCHAMBER, in X-Ray Fluorescence Analysis of Environmental samples, Chapter 21, T. DZUBAY (Ed.), Ann Arbor Science Publ., Ann Arbor, 1976.Google Scholar
  16. 16.
    C. S. G. BEVERIDGE, R. S. SCHECHTER, Optimization: Theory and Practice, Chapter 7, McGraw-Hill, New York, 1970.Google Scholar
  17. 17.
    B. C. COOK, Nucl. Instr. Methods, 24 (1963) 256.CrossRefGoogle Scholar
  18. 18.
    A. S. PENFOLD, J. E. LEISS, Phys. Rev., 114 (1959) 1332.CrossRefGoogle Scholar
  19. 19.
    R. J. GEHRKE, R. C. DAVIES, Anal. Chem., 47 (1975) 1537.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1977

Authors and Affiliations

  • L. A. Currie
    • 1
  1. 1.National Bureau of StandardsWashington, D. C.(USA)

Personalised recommendations