Journal of Radioanalytical Chemistry

, Volume 29, Issue 1, pp 109–119 | Cite as

An analytical representation of the response of the NaI(T1) detector for the gamma-ray spectrum analysis

  • H. Baba
  • T. Sekine
Physical Methods Section


An analytical function for describing the response function of γ-rays from the NaI(Ti) detector was constructed with the purpose of establishing the method of automatic γ-ray spectrum analysis. The response was found to be divided into six portions; the function of each portion joins smoothly to the one representing the adjacent part. Empirical equations for the parameters specifying the response function were found as functions of the γ-ray energy in relation to the detector dimension. The obtained response function was fitted to the observed spectrum by the least squares method. The calculated spectrum agreed well with the observed one.


Response Function Analytical Representation Channel Number Fitting Region Single Straight Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. G. HELMER, R. L. HEATH, M. PUTNAM, D. H. GIBSON, Nucl. Instr. Methods, 57 (1967) 46.CrossRefGoogle Scholar
  2. 2.
    J. T. ROUTTI, S. G. PRUSSIN, Nucl. Instr. Methods, 72 (1969) 125.CrossRefGoogle Scholar
  3. 3.
    H. BABA, H. OKASHITA, S. BABA, T. SUZUKI, H. UMEZAWA, H. NATSUME, J. Nucl. Sci. Technol. (Tokyo), 8 (1971) 703.Google Scholar
  4. 4.
    See for example; P. QUITTNER, R. E. WAINERDI, At. Energy Rev., 8 (1970) 361, or R. L. HEATH, Modern Trends in Activation Analysis, J. R. DEVOE, (Ed.) Vol. 2, NBS, Washington, D. C., 1969.Google Scholar
  5. 5.
    J. J. STEYN, R. HUANG, D. W. HARRIS, Nucl. Instr. Methods, 107 (1973) 465.CrossRefGoogle Scholar
  6. 6.
    J. J. STEYN, D. W. HARRIS, IEEE Trans. Nucl. Sci., NS-17 (1970) 489.CrossRefGoogle Scholar
  7. 7.
    R. L. HEATH, R. G. HELMER, L. A. SCHMITTROTH, G. A. CAZIER, Nucl. Instr. Methods, 47 (1967) 281.CrossRefGoogle Scholar
  8. 8.
    L. SALMON, Proc. Symp. on Radiochemical Methods of Analysis, Vol. 2, IAEA, Vienna, 1965, p. 125.Google Scholar
  9. 9.
    B. R. KOWALSKI, T. L. ISENHOUR, Anal. Chem., 40 (1968) 1186.CrossRefGoogle Scholar
  10. 10.
    R. O. CHESTER, P. W. PEELLE, F. C. MAIENSHEIN, Proc. Symp. on Applications of Computers to Nuclear and Radiochemistry, National Academy of Science Report, NAS-NS-3107, 1963, p. 201.Google Scholar
  11. 11.
    K. OTOZAI, An Experimental Chemistry Course, Nuclear and Radiochemistry, Maruzen, Tokyo, 1966, p. 189.Google Scholar
  12. 12.
    S. YOKOYAMA, J. SATO, Proc. of the 7th Conf. on Radioisotopes, Japan Atomic Industrial Forum, Inc., Tokyo, 1966, p. 447.Google Scholar
  13. 13.
    R. L. HEATH, Scintillation Spectrometry. Gamma-ray Spectrum Catalogue, USAEC Report, IDO-16880-1, TID-4500, 1964.Google Scholar
  14. 14.
    A. SAVITZKY, M. J. E. GOLAY, Anal. Chem., 36 (1964) 1627.CrossRefGoogle Scholar
  15. 15.
    M. J. BERGER, S. M. SELTZER, Nucl. Instr. Methods, 104 (1972) 317.CrossRefGoogle Scholar
  16. 16.
    T. SEKINE, H. BABA, to be published.Google Scholar
  17. 17.
    H. BABA, T. SEKINE, S. BABA, H. OKASHITA, Japan Atomic Energy Research Institute Report, JAERI-1227, 1973.Google Scholar
  18. 18.
    T. SEKINE, H. BABA, Nucl. Instr. Methods, 127 (1975) 261.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1976

Authors and Affiliations

  • H. Baba
    • 1
  • T. Sekine
    • 1
  1. 1.Japan Atomic Energy Research InstituteIbaraki-ken(Japan)

Personalised recommendations