Journal of Radioanalytical Chemistry

, Volume 59, Issue 1, pp 7–13 | Cite as

The determination of tellurium in geological materials using radiochemical neutron activation analysis with a low energy photon detector

  • T. C. Hughes


A method is described for the trace level determination of Te in geological materials with a detection limit of 5–10 ppb. Destructive thermal neutron activation analysis is used with relatively simple radiochemistry employing efficient precipitation and ion exchange techniques. A germanium Low Energy Photon Detector (LEPD) is used for radioassaying which allows the relatively aboundant X-rays from123mTe to be measured. This radioactive isotope emits Te Kα and Kβ X-rays at 27–31 keV which are readily resolved by the LEPD and therefore allows interference effects from fission product Te to be minimised giving reliable trace level data of high accuracy. The validity of the method is demonstrated by reporting analytical data for Te in a range of USGS Standard Rocks.


Tellurium Canberra Industry Hydrazine Sulphate Lucas Height Incipient Dryness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. C. HUGHES, At. En. in Australia, 21 No. 3 (1978) 2.Google Scholar
  2. 2.
    K. K. S. PILLAY, W. W. MILLER, J. Radional. Chem., 2 (1969) 97.CrossRefGoogle Scholar
  3. 3.
    D. J. HUGHES, J. A. HARVEY, Brookhaven Nat. Lab. Rep. BNL-325.Google Scholar
  4. 4.
    U. SCHINDEWOLF, Geochim. Cosmochim. Acta, 19 (1960) 134.CrossRefGoogle Scholar
  5. 5.
    G. G. GOLES, E. ANDERS, Geochim. Cosmochim. Acta, 26 (1962) 723.CrossRefGoogle Scholar
  6. 6.
    T. C. HUGHES, Unpublished PhD Thesis, University of Melbourne, 1978.Google Scholar
  7. 7.
    T. C. HUGHES, Decomposition Bomb. Aust Patent No. 37982/78.Google Scholar
  8. 8.
    P. V. RAO, R. E. WOOD, J. M. PALMS, R. W. FINK, Phys. Rev., 178 (1969) 1997.CrossRefGoogle Scholar
  9. 9.
    J. C. LAUL, D. R. CASE, M. WECHTER, F. SCHMIDT-BLEEK M. E. LIPSCHUTZ, J. Radioanal Chem., 4 (1970) 241.CrossRefGoogle Scholar
  10. 10.
    R. D. BEATY, O. K. MANUEL, Chem. Geol., 12 (1973) 155.CrossRefGoogle Scholar
  11. 11.
    A. P. VINOGRADOV, Geochem. Int., 1 (1956) 1.Google Scholar
  12. 12.
    N. D. SINDEEVA, Mineralogy and Types of Deposits of Selenium and Tellurium, Interscience, New York, 1964.Google Scholar
  13. 13.
    M. K. HORN, J. A. S. ADAMS, Geochim. Cosmochim. Acta, 30 (1966) 279.CrossRefGoogle Scholar
  14. 14.
    G. H. MORRISON, A. T. KASHUBA, Anal. Chem., 41 (1969) 1842.CrossRefGoogle Scholar
  15. 15.
    F. J. FLANAGAN, Geochim. Acta, 37 (1973) 1189.CrossRefGoogle Scholar
  16. 16.
    R. R. KEAYS, R. GANAPATHY, J. C. LAUL, U. KRÄHENBÜHL, J. W. MORGAN, Anal. Chim. Acta, 72 (1974) 1.CrossRefGoogle Scholar
  17. 17.
    I. SCHOENFIELD, A. BERMAN, Anal. Chem., 46 (1974) 1826.CrossRefGoogle Scholar
  18. 18.
    N. LEVI, Anal. Chim. Acta, 70 (1974) 199.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1980

Authors and Affiliations

  • T. C. Hughes
    • 1
  1. 1.Department of Geology, School of Earth SciencesUniversity of MelbourneParkvilleAustralia

Personalised recommendations