Advertisement

Journal of Radioanalytical Chemistry

, Volume 72, Issue 1–2, pp 365–376 | Cite as

Activation of Tl, Pb and Bi by 10–160 MeV neutrons: Possible application to the analysis of Bi+

  • P. P. Parekh
  • H. L. Finston
Neutron Activation Techniques and Applications

Abstract

The medium energy intense neutrons (MEIN) available at the Brookhaven Chemistry Linac Irradiation Facility have an energy distribution up to ∼160 MeV an effective neutron flux of ∼1.3×1011 cm−2s−1. The present work explores the feasibility of using this facility for the analysis of Tl, Pb and Bi by activation with MEIN. The most sensitive reactions, from a practical standpoint, were found to be Tl (n, xn)200Tl (x=4, 6), Pb (n, xn)204mPb (x=0, 3, 4. 5) and209Bi (n, 6n)204Bi. The absolute sensitivities attainable with these reactions are 0.1, 0.05 and 0.08 μg of Tl, Pb and Bi respectively, for 1 h irradiation at 1.3×1011 n cm−2s−1 with samples counted 2 h after the end of irradiation. The advantages of the method over thermal neutron activation analysis are that all three elements can be assayed at the sub-microgram concentration levels by γ-spectrometry with the help of a simple radiochemical purification and the analytical results can be verified by cross checking via the multiple (n, xn) reaction products. However, interference from Bi in the determination of Pb and from Pb and Bi in the determination of Tl limits its usefulness to the analysis of Bi.

Keywords

Neutron Activation Analysis Effective Cross Section Absolute Sensitivity Beam Stop Isopropyl Ether 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. KATCOFF, J. B. CUMMING, J. GODEL, V. J. BUCHANAN, H. SUSSKIND, C. J. HSU, Nuclear Inst. Methods, 129 (1975) 473.CrossRefGoogle Scholar
  2. 2.
    E.-M. FRANZ, S. KATCOFF, H. A. SMITH, Jr., T. E. WARD, Phys. Rev., C12 (1975) 616.Google Scholar
  3. 3.
    P. E. HAUSTEIN, E.-M. FRANZ, S. KATCOFF, N. A. MORCOS, H. A. SMITH, Jr., T. E. WARD, Phys. Rev., C14 (1976) 645.Google Scholar
  4. 4.
    P. E. HAUSTEIN, E.-M. FRANZ, R. F. PETRY, J. C. HILL, Phys. Rev., C16 (1977) 1559.CrossRefGoogle Scholar
  5. 5.
    J. GILAT, S. KATCOFF, J. Inorg. Nucl. Chem., 40 (1978) 369.CrossRefGoogle Scholar
  6. 6.
    P. E. HAUSTEIN, H.-C. HSEUH, R. L. KLOBUCHAR, E.-M. FRANZ, S. KATCOFF, L. K. PEKER, Phys. Rev., C19 (1979) 2332.CrossRefGoogle Scholar
  7. 7.
    E.-M. FRANZ, S. KATCOFF, P. P. PAREKH, L. K. PEKER, Phys. Rev., C (submitted).Google Scholar
  8. 8.
    P. P. PAREKH, L. K. PEKER, S. KATCOFF, E.-M. FRANZ, Phys. Rev., C (submitted).Google Scholar
  9. 9.
    J. B. CUMMING (unpublished): Modification of program by R. GUNNINCK, H. B. LEVY, J. B. NIDAY, Univ. of Cal. Radiat. Lab. Report no. UCID-15140 (unpublished).Google Scholar
  10. 10.
    J. B. CUMMING, NAS-NRC Nuclear Sci. Ser. Report NAS-NS-3107, 1962 (unpublished).Google Scholar

Copyright information

© Akadémiai Kiadó 1982

Authors and Affiliations

  • P. P. Parekh
    • 1
  • H. L. Finston
    • 2
  1. 1.Brookhaven National LaboratoryUptonUSA
  2. 2.Brooklyn CollegeCity University of New YorkBrooklynUSA

Personalised recommendations