Journal of Radioanalytical Chemistry

, Volume 31, Issue 1, pp 335–361 | Cite as

The complex formation-partition and partition-association models of solvent extraction of ions

  • S. Siekierski
Physical Methods Section


Two models of the extraction process have been proposed. In the first model it is assumed that the partitioning neutral species is at first formed in the aqueous phase and then transferred into the organic phase. The second model is based on the assumption that equivalent amounts of cations and anions are at first transferred from the aqueous into the organic phase and then associated to form a neutral molecule. The role of the solubility parameter in extraction and the relation between the solubility of liquid organic substances in water and the partition of complexes have been discussed. The extraction of simple complexes and complexes with organic ligands has been discussed using the first model. Partition coefficients have been calculated theoretically and compared with experimental values in some very simple cases. The extraction of ion pairs has been discussed using the partition-association model and the concept of single-ion partition coefficients.


Free Energy Organic Phase Partition Coefficient Molar Volume Simple Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. MC AULIFFE, J. Phys. Chem., 70 (1966) 1267.Google Scholar
  2. 2.
    M. A. S. LINDENBERG, Compt. Rend., 234 (1958) 2057.Google Scholar
  3. 3.
    H. S. FRANK, M. W. EVANS, J. Chem. Phys., 13 (1945) 507.CrossRefGoogle Scholar
  4. 4.
    H. S. FRANK, W. Y. WEN, Disc. Farad. Sco., 24 (1957) 133.CrossRefGoogle Scholar
  5. 5.
    S. SIEKIERSKI, INR Report “P”-No 1339/V/C, Warsaw 1971.Google Scholar
  6. 6.
    H. BUCHOWSKI, Nature, 194 (1962) 674.CrossRefGoogle Scholar
  7. 7.
    S. SIEKIERSKI, J. Inorg. Nucl. Chem., 24 (1962) 205.CrossRefGoogle Scholar
  8. 8.
    S. SIEKIERSKI, R. OLSZER, J. Inorg. Nucl. Chem., 25 (1963) 1351.CrossRefGoogle Scholar
  9. 9.
    T. WAKAHAYASKI, T. OKI, S. OMORI, N. SUZUKI, J. Inorg. Nucl. Chem., 26 (1964) 2255.CrossRefGoogle Scholar
  10. 10.
    T. OMORI, T. WAKAHAYASKI, S. OKI, N. SUZUKI, J. Inorg. Nucl. Chem., 26 (1964) 2265.CrossRefGoogle Scholar
  11. 11.
    H. FREISER, Anal. Chem., 41 (1969) 1354.CrossRefGoogle Scholar
  12. 12.
    H. TANAKA, Proc. Intern. Solvent Extraction Conference The Hague, 1971, p. 18.Google Scholar
  13. 13.
    H. M. N. H. IRVIN, in Ion Exchange and Solvent Extraction. Vol. 6. M. Dekker, New York 1974, p. 139.Google Scholar
  14. 14.
    J. NARBUTT, S. SIEKIERSKI, Roczniki Chem., 48 (1974) 1777.Google Scholar
  15. 15.
    S. SIEKIERSKI, Nukleonika, 9 (1964) 601.Google Scholar
  16. 16.
    R. D. SANREBRUNN, E. B. SANDELL, J. Am. Chem. Soc., 75 (1953) 4170.CrossRefGoogle Scholar
  17. 17.
    M. CWYNNE, E. DAVIES, J. Am. Chem. Soc., 74 (1952) 2749.Google Scholar
  18. 18.
    G. O. BRINK, P. KALAFAS, R. A. SHARP, E. L. WOISS, J. W. IRVINE Jr., J. Am. Chem. Soc., 79 (1957) 1303.CrossRefGoogle Scholar
  19. 19.
    B. ALLARD, S. JOHNSSON, J. RYDBERG, Proc. Intern. Solvent Extraction Conference, Lyon 1974, p. 1419.Google Scholar
  20. 20.
    S. SIEKIERSKI, unpublished results.Google Scholar
  21. 21.
    A. J. PARKER, R. ALEXANDER, J. Am. Chem. Soc., 90 (1968) 3313.CrossRefGoogle Scholar
  22. 22.
    S. SIEKIERSKI, J. Radioanal. Chem., 21 (1974) 9.Google Scholar
  23. 23.
    M. G. JALHOOM, S. SIEKIERSKI, to be published.Google Scholar
  24. 24.
    A. D. NELSON, C. L. De LIGNY, Rec. Trav. Chim. Pays-Bas, 87 (1968) 528.Google Scholar
  25. 25.
    G. NEMETHY, H. A. SCHERAGA, J. Chem. Phys., 36 (1962) 3461.Google Scholar

Copyright information

© Akadémiai Kiadó 1976

Authors and Affiliations

  • S. Siekierski
    • 1
  1. 1.Department of RadiochemistryInstitute of Nuclear ResearchWarsaw(Poland)

Personalised recommendations