Skip to main content
Log in

Neutron activation analysis of arsenic in rocks and sediments by direct evolution with chloride- and bromide-condensed phosphoric acid reagents

  • Published:
Journal of Radioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A simple method is presented for the determination of arsenic in rocks and in sediments by neutron activation. After irradiating a sample it is, without any other treatment, directly heated in condensed phosphoric acid containing sodium chloride or sodium bromide to evolve arsenic as arsenic(III) chloride or bromide. The distillate is absorbed in distilled water, in which arsenic is later precipitated in elementary form by adding hypophosphite to the solution. From arsenite, arsenic(III) oxide, arsenate and arsenic(III) sulphide, arsenic chloride can be evolved with NaCl-CPA reagent, but elementary arsenic and arsenic(V) oxide do not react with it. However, metallic arsenic is found to react with KIO3-NaCl-CPA and arsenic(V) oxide with the NaBr-CPA, both both evolving arsenic(III) chloride or bromide. Therefore, successive distillations, the first with NaCl-CPA and the second with NaBr-CPA, give a satisfactory means of differential determination of arsenic(III) and arsenate as well as arsenic(V) oxide. For the elementary arsenic a problem still now remains. The chemical recovery of carrier goes well beyond 95%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. H. AHRENS, S. R. TAYLOR, Spectrochemical Analysis, 2nd ed., Addison-Wesley, 1961.

  2. H. ONISHI, E. B. SANDELL, Geochim. Cosmochim. Acta, 7 (1955) 1:

    Article  CAS  Google Scholar 

  3. H. ONISHI, E. B. SANDELL, Mikrochim. Acta, (1953) 34.

  4. J. E. PORTMANN, J. P. RILEY, Anal. Chim. Acta, 31 (1964) 509.

    Article  CAS  Google Scholar 

  5. S. TERASHIMA, Japan Analyst (Bunseki Kagaku), 23 (1974) 1331.

    CAS  Google Scholar 

  6. A. A. SMALES, D. MAPPER, K. F. FOUCHÉ, Geochim. Cosmochim. Acta, 31 (1967) 673.

    Article  CAS  Google Scholar 

  7. W. KIESL, Modern Trends in Activation Analysis, NBS. Special Publ., No. 312, Vol. 1, U.S. Department of the Interior, 1969.

  8. O. LANDSTRÖM, K. SAMSAHL, C. G. WENERR, Modern Trends in Activation Analysis, NBS Special Publ., No. 312, Vol. 1, U.S. Department of the Interior, 1969.

  9. G. H. MORRISON, J.-T. GERARD, A. TRAVESI, R. L. CURRIE, S. F. PETERSON, N. M. POTTER, Anal. Chem., 41 (1969) 1633.

    Article  CAS  Google Scholar 

  10. J. C. LAUL, D. R. CASE, M. WECHTER, F. SCHMIDT-BLECK, M. E. LIPSHUTZ, J. Radioanal. Chem., 4 (1970) 241.

    Article  CAS  Google Scholar 

  11. K. TERADA, S. HIRAKAWA, T. KIBA (Unpublished work).

  12. K. TERADA, T. OOBA, T. KIBA, Talanta, 22 (1975) 41.

    Article  CAS  Google Scholar 

  13. K. TERADA, K. MATSUMOTO, T. KIBA, Bull. Chem. Soc. Japan, 48 (1975) 2567.

    Article  CAS  Google Scholar 

  14. W. M. LATIMER, Oxidation Potentials, 2nd ed., Prentice-Hall, 1961.

  15. P. J. OAKLEY, Quoted in A. ANDO, H. KURASAWA, T. OHMORI, E. TAKEDA, Geochem. J., 8 (1974) 175.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Part of this work was performed at the Research Reactor Institute, Kyoto University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terada, K., Okuda, K. & Kiba, T. Neutron activation analysis of arsenic in rocks and sediments by direct evolution with chloride- and bromide-condensed phosphoric acid reagents. J. Radioanal. Chem. 36, 47–58 (1977). https://doi.org/10.1007/BF02516251

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02516251

Keywords

Navigation