Researches on Population Ecology

, Volume 37, Issue 1, pp 119–128 | Cite as

Variability in wing form of crickets

  • Sinzo Masaki
  • Toru Shimizu
Special Issue: Dispersal Polymorphism in Insects: Its Adaptation and Evolution Part 2

Abstract

Loss of functional hindwings is observed in most subfamilies of Japanese crickets. Habitat, behaviour, body size and phylogenetic factors might be involved, but interactions among them may obscure the general trend. Wing dimorphism is common among the relatively small-sized members of Gryllinae, and the two small-sized subfamilies, Nemobiinae and Trigonidiinae. Both environmental cues (e. g. photoperiod) and genetic factors affect the wing form. InDianemobius fascipes (Nemobiinae), the percentage macroptery was drastically changed by selection for macroptery or microptery. Crossing experiments indicated polygenic control of wing form as well asX-chromosomal and maternal effects. Neither the long-winged nor short-winged line bred true after 40 generations of selection. Full-sib families revealed a large genetic variation in frequency of macropterous forms within a population. The genetic determination of the propensity for macropterism did not seem to be directly coupled to the mechanism performing the photoperiodic time-measurement.

Key words

wing forms crickets environmental factors photoperiod genetic variation selection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, R. D. (1968) Life cycle origins, speciation, and related phenomena in crickets.Q. Rev. Biol. 43: 1–41.PubMedCrossRefGoogle Scholar
  2. Arai, T. (1978a) Effects of environmental conditions on the wing form and growth inGryllodes sigillatus Walker (Orthoptera: Gryllidae).Jpn. J. Ecol. 28: 135–142.Google Scholar
  3. Arai, T. (1978b) Effects of group size on the wing form inGryllodes sigillatus Walker (Orthoptera: Gryllidae).Japn. J. Ecol. 28: 263–267. (in Japanese with English summary)Google Scholar
  4. Danks, H. V. (1987)Insect dormancy; an ecological perspective. Biological Survey of Canada, Ottawa.Google Scholar
  5. Falconer, D. S. (1989)Introduction to quantitative genetics.3rd ed., Longman, New York.Google Scholar
  6. Furukawa, H. (1970) Two new interesting genera and species of crickets of Japan (Orthoptera).Kontyû 38: 59–66.Google Scholar
  7. Gurney, A. B. and D. 3C. Rentz (1978) The cavernicolous fauna of Hawaiian lava tubes.Pacific Insects 18: 85–103.Google Scholar
  8. Harrison, R. G. (1980) Dispersal polymorphisms in insects.Annu. Rev. Ecol. Syst. 11: 95–118.CrossRefGoogle Scholar
  9. Ichikawa, A. (1987) A new species ofGoniogryllus Chopard, with taxonomic comment on the genus (Orthoptera: Gryllidae).Akitu N. Ser. 86: 1–10.Google Scholar
  10. Masaki, S. (1973) Climatic adaptation and photoperiodic response in the band-legged ground cricket.Evolution 26: 587–600.CrossRefGoogle Scholar
  11. Masaki, S. (1979) Climatic adaptation and species status in the lawn ground cricket. I. photoperiodic response.Kontyû 47: 48–65.Google Scholar
  12. Masaki, S. (1986) Significance of ovipositor length in life cycle adaptations of crickets. pp. 20–34.In F. Taylor and R. Karban (eds.)The evolution of insect life cycles Springer, New York.Google Scholar
  13. Masaki, S. and N. Oyama (1963) Photoperiodic control of growth and wing-form inNemobius yezoensis Shiraki (Orthoptera: Gryllidae).Kontyû 31: 16–26.Google Scholar
  14. Masaki, S. and E. Seno (1990) Effect of selection on wing dimorphism in the ground cricketDianemobius fascipes (Walker).Bol. San. Veg. Plagas (Fuera de serie) 20: 381–393.Google Scholar
  15. Masaki, S. and T. Sugahara (1992) Photoperiodic control of larval development and wing form inModicogryllus sp. (Orthoptera: Gryllidae).Ecol. Res. 7: 25–30.CrossRefGoogle Scholar
  16. Masaki, S. and T. J. Walker (1987) Cricket life cycles.Evol. Biol. 21: 349–423.Google Scholar
  17. Masaki, S. and Y. Watari (1989) Response to night interruption in photoperiodic determination of wing form of the ground cricketDianemobius fascipes.Physiol. Entomol. 14: 179–186.Google Scholar
  18. Masaki, S., I. Shirado and A. Nagase (1987) Tropical, subtropical and temperate life cycles in ground crickets,Insect. Sci. Applic. 8: 475–481.Google Scholar
  19. Masaki, S., R. Igarashi, Y. Watari and Y. Fujibayashi (1992) Photoperiodic time measurement in seasonal adaptations of ground crickets. pp. 73–88.In T. Hiroshige and K. Honma (eds.)Circadian clocks from cell to human. Hokkaido Univ. Press, Sapporo.Google Scholar
  20. Mathad, S. B. and J. E. McFarlane (1968) Two effects of photoperiod on wing development inGryllodes sigillatus (Walk.).Can. J. Zool. 46: 57–60.Google Scholar
  21. McFarlane, J. E. (1962) Effect of diet and temperature on wing development inGryllodes sigillatus (Walk.) (Orthoptera: Gryllidae).Ann. Entomol. Soc. Quebec 7: 28–33.Google Scholar
  22. McFarlane, J. E. (1964) Factors affecting growth and wing polymorphism inGryllodes sigillatus (Walk.): dietary protein level and a possible effect of photoperiod.Can. J. Zool. 44: 1017–1021.CrossRefGoogle Scholar
  23. McFarlane, J. E. (1966) Studies on group effects in crickets. III. Wing development ofGryllodes sigillatus (Walk.): dietary protein level and a possible effect of photoperiod.Can. J. Zool. 42: 767–771.Google Scholar
  24. Nakamura, K. (1968) The wing-form in a cricket,Gryllodes sigillatus Walker (Orthoptera: Gryllidae).Jpn. J. Ecol. 18: 186–192.Google Scholar
  25. Ôshiro, Y. (1985) A new species ofPhaloria (Orthoptera, Gryllidae) from the Ryûkyû Islands.Kontyû 53: 138–142.Google Scholar
  26. Ôshiro, Y. (1986) A new species of the genusParapteronemobius (Orthoptera, Gryllidae) from Minamidaito-jima Island.Kontyû,54: 719–722.Google Scholar
  27. Ôshiro, Y. (1988) A new species (Orthoptera, Gryllidae) from Ryûkyû Islands, Japan.Akitu N. Ser. 100: 1–6.Google Scholar
  28. Ôshiro, Y. (1990a) A new species of the genusParapteronemobius (Orthoptera, Gryllidae) from Takara Island, the Tokaras, Japan.Akitu N. Ser. 117: 1–6.Google Scholar
  29. Ôshiro, Y. (1990b) A new species ofVelarifictorus (Orthoptera, Gryllidae) from Okinawa Island, Japan.Jpn. J. Entomol. 58: 355–360.Google Scholar
  30. Ôshiro, Y. (1990c) A new species of the genusParapteronemobius (Orthoptera, Gryllidae) from Akuseki Island in the Tokara Islands Japan.Kontyû 58: 656–660.Google Scholar
  31. Otte, D. (1988) Bark crickets of the western Pacific Region.Proc. Acad. Nat. Sci. Philadelphia 140: 281–334.Google Scholar
  32. Roff, D. A. (1984) The cost of being able to fly: a study of wing polymorphism in two species of crickets.Oecologia 63: 30–37.CrossRefGoogle Scholar
  33. Roff, D. A. (1986a) The genetic basis of wing dimorphism in the sand cricket,Gryllus firmus and its relevance to the evolution of wing dimorphisms in insects.Heredity 57: 221–231.Google Scholar
  34. Roff, D. A. (1986b) The evolution of wing dimorphism in insects.Evolution 40: 1009–1020.CrossRefGoogle Scholar
  35. Roff, D. A. (1989) Exaptation and the evolution of dealation in insects.J. Evol. Biol. 2: 109–123.CrossRefGoogle Scholar
  36. Roff, D. A. (1990a) Selection for changes in the incidence of wing dimorphism inGryllus firmus.Heredity 65: 163–168.Google Scholar
  37. Roff, D. A. (1990b) The evolution of flightlessness in insects.Ecol. Monogr. 60: 389–421.CrossRefGoogle Scholar
  38. Roff, D. A. (1994) The evolution of dimorphic traits: heritability and norm of reaction. (in press)Google Scholar
  39. Saeki, H. (1966a) The effect of the population density on the occurrence of the macropterous form in a cricket,Scapsipedus aspersus Walker (Orthoptera, Gryllidae).Japan. J. Ecol. 16: 1–4, (in Japanese with English summary)Google Scholar
  40. Saeki, H. (1966b) The effect of the day-length on the occurrence of the macropterous form in a cricket,Scapsipedus aspersus Walker (Orthoptera, Gryllidae).Japan. J. Ecol. 16: 49–52. (in Japanese with English summary)Google Scholar
  41. Sharov, A. G. (1968)Phylogeny of the Orthopteroidea. Izdatel'stvo Nauka, Moskva. (English edition, 1971)Google Scholar
  42. Shimizu, T. and S. Masaki (1993) Genetic variability of wing-form response to photoperiod in a subtropical population of the ground cricket,Dianemobius fascipes.Zool. Sci. 10: 935–944.Google Scholar
  43. Shimizu, T. and S. Masaki (1993) Injury causes microptery in the ground cricket,Dianemobius fascipes.J. Insect Physiol. 39: 1021–1027.CrossRefGoogle Scholar
  44. Tanaka, S. (1976) Wing polymorphism, egg production and adult longevity inPteronemobius taprobanensis Walker (Orthoptera, Gryllidae).Kontyû 44: 327–333.Google Scholar
  45. Tanaka, S. (1978) Photoperiodic determination of wing form inPteronemobius nitidus Bolivar (Orthoptera, Gryllidae).Kontyû 46: 207–217.Google Scholar
  46. Tanaka, S. (1986a) Developmental characteristics of two closely related species ofAllonemobius and their hybrids.Oecologia 69: 388–394.CrossRefGoogle Scholar
  47. Tanaka, S. (1986b) De-alation, flight muscle histolysis, and oocyte development in the striped ground cricket,Allonemobius fasciatus.Physiol. Entomol. 11: 453–458.Google Scholar
  48. Tanaka, S. (1991) De-alation and its influences on egg production and flight muscle histolysis in a cricket (Velarifictorus parvus) that undergoes inter-reproductive migration.J. Insect Physiol. 37: 517–523.CrossRefGoogle Scholar
  49. Tanaka, S. (1993) Allocation of resources to egg production and flight muscle development in a wing dimorphic cricket,Modicogryllus confirmatus.J. Insect Physiol. 39: 493–498.CrossRefGoogle Scholar
  50. Tanaka, S., M. Matsuka and T. Sakai (1976) Effect of change in photoperiod on wing form inPteronemobius taprobanensis Walker (Orthoptera: Gryllidae).Appl. Entomol. Zool. 11: 27–32.Google Scholar
  51. Walker, T. J. (1987) Wing dimorphism inGryllus rubens (Orthoptera: Gryllidae).Ann. Entomol. Soc. Am. 80: 547–560.Google Scholar
  52. Walker, T. J. and J. M. Sivinski (1986) Wing dimorphism in field crickets (Orthoptera: Gryllidae:Gryllus).Ann. Entomol. Soc. Am. 79: 84–90.Google Scholar
  53. Walker, T. J. and S. Masaki (1989) Natural history. pp. 1–42.In F. Huber, T. E. Moore and W. Loher (eds.)Cricket behavior and neurobiology. Cornell Univ. Press, Ithaca.Google Scholar
  54. Yamasaki, T. (1985) A new genus and species of Mogoplistidae (Orthoptera, Gryllidae) from the Ryûkyûs.Proc. Jpn. Soc. Sys. Zool. 31: 44–49.Google Scholar
  55. Zera, A. J. and K. C. Tiebel (1988) Brachypterizing effect of group rearing, juvenile hormone-III and methoprene on winglength development in the wing-dimorphic cricket,Gryllus rubens.J. Insect Physiol. 34: 489–498.CrossRefGoogle Scholar

Copyright information

© the Society of Population Ecology 1995

Authors and Affiliations

  • Sinzo Masaki
    • 1
  • Toru Shimizu
    • 1
  1. 1.Laboratory of EntomologyFaculty of Agriculture Hirosaki UniversityHirosakiJapan

Personalised recommendations