Skip to main content
Log in

Evolution and population dynamics in stochastic environments

  • Special Feature 1
  • Published:
Researches on Population Ecology

Abstract

Inter-generational temporal variability of the environment is important in the evolution and adaptation of phenotypic traits. We discuss a population-dynamic approach which plays a central role in the analysis of evolutionary processes. The basic principle is that the phenotypes with the greatest long-term average growth rate will dominate the entire population. The calculation of longterm average growth rates for populations under temporal stochasticity can be highly cumbersome. However, for a discrete non-overlapping population, it is identical to the geometric mean of the growth rates (geometric mean fitness), which is usually different from the simple arithmetic mean of growth rates. Evolutionary outcomes based on geometric mean fitness are often very different from the predictions based on the usual arithmetic mean fitness. In this paper we illustrate the concept of geometric mean fitness in a few simple models. We discuss its implications for the adaptive evolution of phenotypes, e.g. foraging under predation risks and clutch size. Next, we present an application: the risk-spreading egg-laying behaviour of the cabbage white butterfly, and develop a two-patch population dynamic model to show how the optimal solution diverges from the ssual arithmetic mean approach. The dynamics of these stochastic models cannot be predicted from the dynamics of simple deterministic models. Thus the inclusion of stochastic factors in the analyses of populations is essential to the understanding of not only population dynamics, but also their evolutionary dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amir, S. and D. Cohen (1990) Optimal reproductive efforts and the timing of reproduction of annual plants in randomly varying environments.Journal of Theoretical Biology 147: 17–42.

    Article  Google Scholar 

  • Andrewartha, H. G. and L. C. Birch (1954)The distribution and abundance of animals. University of Chicago Press, Chicago.

    Google Scholar 

  • Andrewartha, H. G. and L. C. Birch (1984)The ecological web: more on the distribution and abundance of animals. University of Chicago Press, Chicago.

    Google Scholar 

  • Bailey, N. T. J. (1957)The mathematical theory of epidemics. Charles Griffin, London.

    Google Scholar 

  • Bartlett, M. S. (1960)Stochastic population models in ecology and epidemiology. Methuen, London.

    Google Scholar 

  • Bartlett, M. S. (1966)An introduction to stochastic processes with special reference to methods and applications. Cambridge University Press, Cambridge.

    Google Scholar 

  • Beissinger, S. R. (1986) Demography, environmental uncertainty, and the evolution of mate desertion in the Snail Kite,Ecology 67: 1445–1459.

    Article  Google Scholar 

  • Beissinger, S. R. and J. P. Gibbs (1993) Are variable environments stochastic? A review of methods to quantify environmental predictability. pp. 132–146.In J. Yoshimura and C. W. Clark (eds.)Adaptation in stochastic environments. Lecture Notes in Biomathematics Vol. 98. Springer, Berlin.

    Google Scholar 

  • Boerlijst, M. C., M. E. Lamers and P. Hogeweg (1993) Evolutionary consequences of spiral waves in a host-parasitoid system.Proceedings of the Royal Society of London B, Biological Sciences 253: 15–18.

    Google Scholar 

  • Boyce, M. S. (1977) Population growth with stochastic fluctuations in the life table.Theoretical Population Biology 12: 366–373.

    Article  PubMed  CAS  Google Scholar 

  • Boyce, M. S. and C. M. Perrins (1987) Optimizing Great Tit clutch size in a fluctuating environment.Ecology 68: 142–153.

    Article  Google Scholar 

  • Brady, R. H. (1979) Natural selection and the criteria by which a theory is judged.Systematic Zoology 28: 600–621.

    Article  Google Scholar 

  • Brown, J. S. and D. L. Venable (1986) Evolutionary ecology of seed-bank annuals in temporally varying environments.American Naturalist 127: 31–47.

    Article  Google Scholar 

  • Bull, J. J. (1987) Evolution of phenotypic variance.Evolution 41: 303–315.

    Article  Google Scholar 

  • Bulmer, M. (1984) Delayed germination of seeds: Cohen's model revisited.Theoretical Population Biology 26: 367–377.

    Article  Google Scholar 

  • Bulmer, M. (1985) Selection for iteroparity in a variable environment.American Naturalist 126: 63–71.

    Article  Google Scholar 

  • Bulmer, M. (1994)Theoretical evolutionary ecology. Sinauer, Sunderland.

    Google Scholar 

  • Caswell, H. (1989)Matrix population models. Sinauer, Sunderland.

    Google Scholar 

  • Chesson, P. L. (1982) The stabilizing effect of random environment.Journal of Mathematical Biology 15: 1–36.

    Article  Google Scholar 

  • Chesson, P. L. (1983) Coexistence of competitors in a stochastic environment: the storage effect. pp 188–198.In I. Freedman and C. Strobeck (eds.)Population biology. Lecture Notes in Biomathematics Vol 52. Springer, Berlin.

    Google Scholar 

  • Chesson, P. L. (1985) Coexistence of competitors in spatially and temporally varying environments: a look at the combined effects of different sorts of variability.Theoretical Population Biology 28: 263–287.

    Article  Google Scholar 

  • Chesson, P. L. (1986) Environmental variation and the coexistence of species. pp. 240–256.In J. Diamond and T. Case (eds.)Community ecology. Harper & Row, New York.

    Google Scholar 

  • Chesson, P. L. (1994) Multispecies competifion in variable environments.Theoretical Population Biology 45: 227–276.

    Article  Google Scholar 

  • Chesson, P. L. and S. Ellner (1989) Invasability and stochastic boundedness in monotonic competition models.Journal of Mathematical Biology 27: 117–138.

    Google Scholar 

  • Chesson, P. L. and N. Huntly (1989) Short-term instabilities and long-term community dynamics.Trends in Ecology and Evolution 4: 293–298.

    Article  Google Scholar 

  • Chesson, P. L. and R. R. Warner (1981) Environmental variability promotes coexistence in lottery competitive systems.American Naturalist 117: 923–943.

    Article  Google Scholar 

  • Clark, C. W. and J. Yoshimura (1993a) Behavioral responses to variations in population size: A stochastic evolutionary game.Behavioural Ecology 4: 282–288.

    Google Scholar 

  • Clark, C. W. and J. Yoshimura (1993b) Optimization and ESS analysis for populations in stochastic environments. pp. 122–131.In J. Yoshimura and C. W. Clark (eds.)Adaptation in stochastic environments. Lecture Notes in Biomathematics Vol. 98. Springer, Berlin.

    Google Scholar 

  • Cohen, D. (1966) Optimizing reproduction in a randomly varying environment.Journal of Theoretical Biology 12: 119–129.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, D. (1967) Optimizing reproduction in a randomly varying environment when a correlation may exist between the conditions at the time a choice has to be made and the subsquent outcomes.Journal of Theoretical Biology 16: 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, D. (1968) A general model of optimal reproduction in a randomly varying environment.Journal of Ecology 56: 219–228.

    Article  Google Scholar 

  • Cohen, D. (1970a) A theoretical model for the optimal timing of diapause.American Naturalist 104: 389–400.

    Article  Google Scholar 

  • Cohen, D. (1970b) The optimal timing of reproduction.American Naturalist 110: 801–807.

    Google Scholar 

  • Cohen, D. (1993) Fitness in random environments. pp. 8–25.In J. Yoshimura and C. W. Clark (eds.)Adaptation in stochastic environments. Lecture Notes in Biomathematics Vol. 98. Springer, Berlin.

    Google Scholar 

  • Cohen, D. and S. A. Levin (1991) Dispersal in patchy environments: the effects of temporal and spatial structure.Theoretical Population Biology 39: 63–99.

    Article  Google Scholar 

  • Cohen, J. E. (1995) Unexpected dominance of high frequencies in chaotic nonlinear population models.Nature 378: 610–612.

    Article  PubMed  CAS  Google Scholar 

  • Comins, N. R. and I. R. Noble (1985) Dispersal, variablity, and transient niches: species coexistence in a uniformly varying environment.American Naturalist 126: 706–723.

    Article  Google Scholar 

  • Cooper, W. S. (1984) Expected time to extinction and the concept of fundamental fitness.Journal of Theoretical Biology 107: 603–629.

    Google Scholar 

  • Cooper, W. S. and R. H. Kaplan (1982) Adaptive “coin-flipping”: a decision-theoretic examination of natural selection for random individual variation.Journal of Theoretical Biology 94: 135–151.

    Article  PubMed  CAS  Google Scholar 

  • Courtney, S. P. (1986) Why insects move between host patches: some comments on ‘risk-spreading.’Oikos 47: 112–114.

    Google Scholar 

  • Crow, J. F. and M., Kimura (1970)An introduction to population genetics theory. Harper & Row, New York.

    Google Scholar 

  • Darwin, C. (1859)On the origin of species by means of natural selection. John Murray, London.

    Google Scholar 

  • Dawkins, R. (1979) Twelve misunderstandings of kin selection.Zeitschrift für Tierpsychologie 51: 184–200.

    Google Scholar 

  • Dempster, E. R. (1955) Maintenance of genetic heterogenniety.Cold Spring Harbor Symposia in Quantitative Biology 20: 25–32

    CAS  Google Scholar 

  • den Boer, P. J. (1968) Spreading of risk and stabilization of animal numbers.Acta Biotheoretica 18: 165–194.

    Article  Google Scholar 

  • den Boer, P. J. (1981) On the survival of populations in a heterogeneous and variable environment.Oecologia 50: 39–53.

    Article  Google Scholar 

  • den Boer, P. J. (1990) The survival value of dispersal in terrestrial arthropods.Biological Conservation 54: 175–192.

    Article  Google Scholar 

  • Ellner, S. (1985a) ESS germination strategies in randomly varying environments. I. Logistic-type models.Theoretical Population Biology 28: 50–79

    Article  PubMed  CAS  Google Scholar 

  • Ellner, S. (1985b) ESS germination strategies in randomly varying environments. II. Reciprocal yield models.Theoretical Population Biology 28: 80–116.

    Article  PubMed  CAS  Google Scholar 

  • Ellner, S. (1987) Alternate plant life history strategies and coexistence in randomly varying environments.Vegetatio 69: 199–208.

    Article  Google Scholar 

  • Ellner, S. and N. G. Hairston, Jr. (1994) Role of overlapping generations in maintaining genetic variation in a fluctuating environment.American Naturalist 143: 403–417.

    Article  Google Scholar 

  • Ellner, S. and A. Sasaki. Patterns of genetic polymorphism maintained by fluctuating selection with overlapping generations.Theoretical Population Biology (in press)

  • Fisher, R. A. (1930)The genetical theory of natural selection. Oxford University Press (Reprint: 1958, Dover, New York).

    Google Scholar 

  • Ford, E. B. (1964)Ecological genetics. Chapman & Hall, London.

    Google Scholar 

  • Frank, S. and M. Slatkin (1990) Evolution in a variable environment.American Naturalist 136: 244–260.

    Article  Google Scholar 

  • Geritz, S. A. H. (1995) Evolutionary stable seed polymorphism and small-scale spatial variation in seedling density.American Naturalist 146: 685–707.

    Article  Google Scholar 

  • Gillespie, J. H. (1972) The effects of stochastic environments on allele frequencies.Theoretical Population Biology 3: 241–248.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie, J. H. (1973) Polymorphism in random environment.American Naturalist 108: 145–151.

    Google Scholar 

  • Gillespie, J. H. (1974) Natural selection for within-generation variance in offspring number.Genetics 76: 601–608.

    PubMed  CAS  Google Scholar 

  • Gillespie, J. H. (1975) Natural selection for within-generation variance in offspring number II. discrete haploid model.Genetics 81: 403–413.

    PubMed  CAS  Google Scholar 

  • Gillespie, J. H. (1977) Natural selection for variance in offspring numbers: a new evolutionary principle.American Naturalist 111: 1010–1014.

    Article  Google Scholar 

  • Gillespie, J. H. (1991)The causes of molecular evolution. Oxford University Press, Oxford.

    Google Scholar 

  • Godfray, H. C. J., L. M. Cook and M. P. Hassell (1991) Population dynamics, natural selection and chaos. pp. 55–86.In R. J. Berry, T. J. Crawford and G. M. Hewitt (eds.)Genes in ecology. Blackwell, Oxford.

    Google Scholar 

  • Godfray, H. C. J., L. Partridge and P. H. Harvey (1991) Clutch size.Annual Review of Ecology and Systematics 22: 409–429.

    Article  Google Scholar 

  • Goel, N. S. and N. Richter-Dyn (1974)Stochasitc models in biology. Academic Press, London.

    Google Scholar 

  • Goodman, D. (1984) Risk spreading as an adaptive strategy in iteroparous life histories.Theoretical Population Biology 25: 1–20.

    Article  PubMed  CAS  Google Scholar 

  • Grafen, A. (1985) A geometric view of relatedness.Oxford Surveys in Evolutionary Biology 2: 28–89.

    Google Scholar 

  • Gyllenberg, M. G. Söderbacka and S. Ericsson (1993) Does migration stabilize local population dynamics? Analysis of a discrete metapopulation model.Mathematical Biosciences 118: 25–49.

    Article  PubMed  CAS  Google Scholar 

  • Haccou, P. and Y. Iwasa (1995) The optimal mixed strategies in stochastic environments.Theoretical Population Biology 47: 212–243.

    Article  Google Scholar 

  • Haccou, P. and Y. Iwasa. Establishment probability in fluctuating environments: a branching process model.Theoretical Population Biology (in press)

  • Hairston Jr., N. G. and T. A. Dillon (1990) Fluctuating selection and response in a population of freshwater copepods.Evolution 44: 1796–1805.

    Article  Google Scholar 

  • Haldane, J. B. S. and S. D. Jayakar (1963) Polymorphism due to selection of varying direction.Journal of Genetics 58: 237–242.

    Article  Google Scholar 

  • Halley, J. M. (1996) Ecology, evolution and 1/f-noise.Trends in Ecology and Evolution 11: 33–37.

    Article  Google Scholar 

  • Hassell, M. P. (1978)The dynamics of arthropod predator-prey systems. Princeton University Press, Princeton.

    Google Scholar 

  • Hassell, M. P., H. Comins and R. M. May (1991) Spatial structure and chaos in insect population dynamics.Nature 353: 252–258.

    Article  Google Scholar 

  • Hedrick, P. W. (1986) Genetic polymorphism in heterogeneous environments: a decade later.Annual Review of Ecology and Systematics 7: 1–32.

    Article  Google Scholar 

  • Hirshleifer, J. and J. G. Riley (1992)The analysis of uncertainty and information. Cambridge University Press, Cambridge.

    Google Scholar 

  • Holsinger, K. E. and S. W. Pacala (1990) Multiple-niche polymorphisms in plant populations.American Naturalist 135: 301–309.

    Article  Google Scholar 

  • Holt, R. D. (1985) Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat distribution.Theoretical Population Biology 28: 181–208.

    Article  Google Scholar 

  • Ito, Y. (1980)Comparative ecology, 2nd Edition. Cambridge University Press, Cambridge.

    Google Scholar 

  • Iwasa, Y. (1991) Pessimistic plant: optimal growth schedule in stochastic environments.Theoretical Population Biology 40: 246–268.

    Article  Google Scholar 

  • Iwasa, Y. and P. Haccou (1994) ESS emergence pattern of male butterflies in stochastic environments.Evolutionary Ecology 8: 503–523.

    Article  Google Scholar 

  • Iwasa, Y. and S. A. Levin (1995) The timing of life history events.Journal of Theoretical Biology 172: 33–42.

    Article  Google Scholar 

  • Jansen, V. A. A. (1994)Theoretical aspects of metapopulation dynamics. Ph. D. Thesis, Leiden University, Leiden.

    Google Scholar 

  • Jansen, V. A. A. (1995) Regulation of predator-prey systems through spatial interactions: a possible solution to the paradox of enrichment.Oikos 74: 384–390.

    Google Scholar 

  • Kaplan, S. and W. S. Cooper (1984) The evolution of developmental plasticity in reproductive characteristics: an application of the ‘adaptive coin-flipping’ principle.American Naturalist 123: 393–410.

    Article  Google Scholar 

  • Karlin, S. and U. Liebermann (1974) Random temporal variation in selection intensities: case of large population size.Theoretical Population Biology 6: 355–382.

    Article  PubMed  CAS  Google Scholar 

  • Karlin, S. and H. M. Taylor (1975)A first course in stochastic processes, 2nd Edition. Academic Press, New York.

    Google Scholar 

  • Kisdi, É. and G. Meszéna (1993) Density-dependent life history evolution in fluctuating environments. pp. 26–62.In J. Yoshimura and C. W. Clark (eds.)Adaptation in stochastic environments. Lecture Notes in Biomathematics Vol. 98. Springer, Berlin.

    Google Scholar 

  • Kisdi, É. and G. Meszéna (1995) Life histories with lottery competition in a stochastic environment: ESS's which do not preveil.Theoretical Population Biology 47: 191–211.

    Article  Google Scholar 

  • Klomp, H. (1970) The determination of clutch size in birds: a review.Ardea 58: 1–124.

    Google Scholar 

  • Krebs, J. R. and N. B. Davies (1987)An introduction to behavioural ecology. 2nd edition. Blackwell, Oxford.

    Google Scholar 

  • Kozlowski, J. and S. C. Stearns (1989) Hypothesis for the production of excess zygotes: models of bet-hedging and selective abortion.Evolution 43: 1369–1377.

    Article  Google Scholar 

  • Kuno, E. (1981) Dispersal and the persistence of populations in unstable habitats: a theoretical note.Oecologia 49: 123–126.

    Article  Google Scholar 

  • Lacey, E. P., L. Real, J. Antonovics and D. G. Heckel (1983) Variance models in the study of life history.American Naturalist 122: 114–131.

    Article  Google Scholar 

  • Lack, D. (1947) The significance of clutch size.Ibis 89: 302–352.

    Google Scholar 

  • Lack, D. (1954)The natural regulation of animal numbers. Oxford University Press, Oxford.

    Google Scholar 

  • Lambert, C. (1995) “Born to rebel,”Harvard Magazine 97 (6:July–August): 10–11.

    Google Scholar 

  • Lande, R. (1987) Extinction thresholds in demographic models of territorial populations.American Naturalist 130: 624–635.

    Article  Google Scholar 

  • Lande, R. (1988) Genetics and demography in biological conservation.Science 241: 1455–1460.

    Article  PubMed  CAS  Google Scholar 

  • Lande, R. and S. H. Orzack (1988) Extinction dynamics of age-structured populations in a fluctuating environment.Proceedings of the National Academy of Sciences of the USA 85: 7418–7421.

    Article  PubMed  CAS  Google Scholar 

  • León, J. A. (1983) Compensatory strategies of energy investment in uncertain environments. pp. 85–90.In H. E. Freedman and C. Strobeck (eds.)Population biology. Lecture Notes in Biomathematics Vol 52. Springer, Berlin.

    Google Scholar 

  • León, J. A. (1985) Germination strategies. pp. 129–143.In P. J. Greenwood, P. H. Harvey and M. Slatkin (eds.)Evolution: essays in honour of John Maynard Smith. Cambridge University Press, Cambridge.

    Google Scholar 

  • León, J. A. (1993) Plasticity in fluctuating environments. pp. 105–121.In J. Yoshimura and C. W. Clark (eds.)Adaptation in stochastic environments. Lecture Notes in Biomathematics, Vol. 98. Springer, Berlin.

    Google Scholar 

  • Levene, H. (1953) Genetic equilibrium when more than one niche is available.American Naturalist 87: 331–333.

    Article  Google Scholar 

  • Levin, S. A. (1976) Population dynamic models in heterogeneous environments.Annual Review of Ecology and Systematics 7: 287–310.

    Article  Google Scholar 

  • Levin, S. A., A. Hastings and D. Cohen (1984) Dispersal strategies in patchy environments.Theoretical Population Biology 26: 165–191.

    Article  Google Scholar 

  • Levins, R. (1962) Theory of fitness in a heterogeneous environment. I. The fitness set and adaptive function.American Naturalist 96: 361–373.

    Article  Google Scholar 

  • Levins, R. (1968)Evolution in changing environments. Princeton University Press, Princeton.

    Google Scholar 

  • Levins, R. (1979) Coexistence in a variable environment.American Naturalist 114: 765–783.

    Article  Google Scholar 

  • Lewontin, R. C. and D. Cohen (1969) On population growth in a randomly varying environment.Proceedings of the National Academy of Sciences of the USA 62: 1056–1060.

    Article  PubMed  CAS  Google Scholar 

  • Lively, C. M. (1986) Canalization versus developmental conversion in a spacially variable environment.American Naturalist 128: 561–572.

    Article  Google Scholar 

  • Ludwig, D. (1974)Stochastic population theories. Lecture Notes in Biomathematics Vol 3. Spirnger, Berlin.

    Google Scholar 

  • Ludwig, D. and S. A. Levin (1991) Evolutionary stability of plant communities and the maintenance of multiple dispersal types.Theoretical Population Biology 41: 285–307.

    Article  Google Scholar 

  • Mangel, M. and C. Tier (1993) Dynamics of metapopulations with demographic stochasticity and environmental catastrophes.Theoretical Population Biology 44: 1–31.

    Article  Google Scholar 

  • Markowitz, H. M. (1991)Portfolio selection: efficient diversification of investments. 2nd ed. B. Blackwell, Cambridge.

    Google Scholar 

  • May, R. M. (1974a)Stability and complexity in model ecosystems. 2nd edition. Princeton University Press, Princeton.

    Google Scholar 

  • May, R. M. (1974b) Biological populations with non-overlapping generations: stable points, stable cycles, and chaos.Science 186: 645–647.

    Article  PubMed  CAS  Google Scholar 

  • Maynard Smith, J. (1978) Optimization theory in evolution.Annual Review of Ecology and Systematics 9: 31–56.

    Article  Google Scholar 

  • Maynard Smith, J. (1982)Evolution and the theory of games. Cambridge University Press, Cambridge.

    Google Scholar 

  • McGinley, M. A. and E. L. Charnov (1988) Multiple resources and the optimal balance between size and number of offspring.Evolutionary Ecology 2: 77–84.

    Article  Google Scholar 

  • McGinley, M. A., D. H. Temme and M. A. Geber (1987) Parental investment in offspring in variable environments: theoretical and empirical considerations.American Naturalist 130: 370–398.

    Article  Google Scholar 

  • McNamara, J. M. (1995) Implicit frequency dependence and kin selection in fluctuating environments.Evolutionary Ecology 9: 185–203.

    Article  Google Scholar 

  • Metz, J. A. J., T. J. de Jong and P. G. L. Klinkhamer (1983) What are the advantages of dispersing: a paper by Kuno explained and extended.Oecologia 57: 166–169.

    Article  Google Scholar 

  • Metz, J. A. J., R. M. Nisbet and S. A. H. Geritz (1992) How should we define ‘fitness’ for general ecological senarios?Trends in Ecology and Evolution 7: 198–202.

    Article  Google Scholar 

  • Metz, J. A. J., S. A. H. Geritz, G. Meszéna, F. J. A. Jacobs and J. S. van Heerwaarden (1995) Adaptive dynamics: a geometrical study of the consequences of nearly faithful reproduction.In S. J. van Strien and S. M. Verduyn Lunel (eds.)Dynamical Systems and their applications. KNAW verhandelingen, Afd Natuurkunde, North Holland, Amsterdam.

    Google Scholar 

  • Monod, J. (1971)Chance and necessity. Vintage Books, New York.

    Google Scholar 

  • Mountford, M. D. (1968) The significance of litter-size.Journal of Animal Ecology 37: 363–367.

    Article  Google Scholar 

  • Murphy, G. I. (1968) Pattern in life history and the environment.American Naturalist 102: 390–404.

    Google Scholar 

  • Nisbet, R. M. and W. S. C. Gurney (1982)Modelling fluctuating populations. John Wiley, New York.

    Google Scholar 

  • Orzack, S. H. (1985) Population dynamics in variable environments V. the genetics of homeostasis revisited.American Naturalist 125: 550–572.

    Article  Google Scholar 

  • Orzack, S. H. (1993) Life history evolution and population dynamics in variable environments: some insights from stochastic demography. pp. 63–104.In J. Yoshimura and C. W. Clark (eds.)Adaptation in stochastic environments. Lecture Notes in Biomathematics Vol. 98. Springer, Berlin.

    Google Scholar 

  • Orzack, S. H. and S. Tuljapurkar (1989) Population dynamics in variable environments VII. The demography and evolution of iteroparity.American Naturalist 133: 901–923.

    Article  Google Scholar 

  • Oster, G. F. and E. O. Wilson (1978)Caste and ecology in the social insects. Princeton University Press, Princeton.

    Google Scholar 

  • Palmer, A. R. and R. R. Strathmann (1981) Scale of dispersal in varying environments and its implications for life histories of marine invertebrates.Oecologia 48: 308–318.

    Article  Google Scholar 

  • Parker, G. A. and J. Maynard Smith (1990) Optimality theory in evolutionary biology.Nature 348: 27–33.

    Article  Google Scholar 

  • Pettifor, R. A., C. M. Perrins and R. H. McCleery (1988) Individual optimization of clutch size in great tits.Nature 336: 160–162.

    Article  Google Scholar 

  • Philippi, T. (1993a) Bet-hedging germination of desert annuals: beyond the first year.American Naturalist 142: 474–487.

    Article  Google Scholar 

  • Philippi, T. (1993b) Bet-hedging germination of desert annuals: variation among populations and maternal effects inLepidium lasiocarpum.American Naturalist 142: 488–507.

    Article  Google Scholar 

  • Philippi, T. and J. Seger. (1989) Hedging one's evolutionary bets, revisited.Trends in Ecology and Evolution 4: 41–44.

    Article  Google Scholar 

  • Price, T. and L. Liou (1989) Selection on clutch size in birds.American Naturalist 134: 950–959.

    Article  Google Scholar 

  • Real, L. A. and T. Caraco (1986) Risk and foraging in stochastic environments.Annual Review of Ecology and Systematics 17: 371–390.

    Article  Google Scholar 

  • Real, L. A. and S. Ellner (1992) Life history evolution in stochastic environments: a graphical mean-variance approach.Ecology 73: 1227–1236.

    Article  Google Scholar 

  • Reddingius, J. (1971) Gambling for existence: a discussion of some theoretical problems in animal population ecology.Acta Biotheoretica 20: 1–208.

    Article  Google Scholar 

  • Reddingius, J. and P. J. den Boer (1970) Simulation experiments illustrating stabilization of animal numbers by spreading of risk.Oecologia 5: 240–284.

    Article  Google Scholar 

  • Ritland, K. (1983) The joint evolution of seed dormancy and flowering time in annual plants living in variable environments.Theoretical Population Biology 24: 213–243.

    Article  Google Scholar 

  • Roff, D. A. (1974a) Spatial heterogeniety and the persistence of populations.Oecologia 15: 245–258.

    Article  Google Scholar 

  • Roff, D. A. (1974b) The analysis of a population model demonstrating the importance of dispersal in a heterogeneous environment.Oecologia 15: 259–275.

    Article  Google Scholar 

  • Roff, D. A. (19992)The evolution of life histories: theory and analysis. Chapman & Hall, New York.

    Google Scholar 

  • Root, R. B. and P. M. Kareiva (1984) The search for resources by cabbage butterflies (Pieris rapae): Ecological consequences and adaptive significance of markovian movements in a patchy environment.Ecology 65: 147–165.

    Article  Google Scholar 

  • Root, R. B. and P. Kareiva (1986) Is risk-spreading so unrealistic?Oikos 47: 114–116.

    Google Scholar 

  • Roughgarden, J. (1979)Theory of population genetics and evolutionary ecology: an introduction. Macmillan, New York.

    Google Scholar 

  • Saiah, H. and N. Perrin (1990) Autumnal vs. spring hatching in the fairy shrimpSiphonophanes grubii (Dybowski) (Crustacea, Anostraca): diversified bet-hedging strategy?Functional Ecology 4: 769–775.

    Article  Google Scholar 

  • Sale, P. F. (1982) Stock-recruitment relationships and regional coexistence in a lottery competitive system: a simulation study.American Naturalist 120: 139–159.

    Article  Google Scholar 

  • Samuelson, P. H. (1965)Foundations of economic analysis. Harvard University Press, Cambridge.

    Google Scholar 

  • Sasaki, A. and S. Ellner (1995) The evolutionary stable phenotype distribution in a random environment.Evolution 49: 337–350.

    Article  Google Scholar 

  • Schaffer, W. (1974) Optimal reproductive effort in fluctuating environments.American Naturalist 108: 783–790.

    Article  Google Scholar 

  • Schaffer, W. and M. D. Gadgil (1975) Selection for optimal life histories in plants. pp. 142–157.In M. N. Cody and J. M. Diamond (eds.)Ecology and evolution of communities. Belknap Press, Cambridge.

    Google Scholar 

  • Schultz, D. L. (1991) Parental investment in temporally varying environments.Evolutionary Ecology 5: 415–427.

    Article  Google Scholar 

  • Segel, L. A. and J. L. Jackson (1972) Dissipative structure: an explanation and an ecological example.Journal of Theoretical Biology 35: 545–559.

    Article  Google Scholar 

  • Seger, J. and H. J. Brockmann (1987) What is bet-hedging?Oxford Surveys in Evolutionary Biology 4: 182–211.

    Google Scholar 

  • Sevenster, J. G. and J. J. M. van Alphen (1993a) Coexistence in stochastic environments through a life history trade off inDrosophila. pp. 155–172.In J. Yoshimura and C. W. Clark (eds.)Adaptation in stochastic environments. Lecture Notes in Biomathematics Vol. 98. Springer, Berlin.

    Google Scholar 

  • Sevenster, J. G. and J. J. M. van Alphen (1993b) A life history trade-off inDrosophila species and community structure in variable environments.Journal of Animal Ecology 62: 720–736.

    Article  Google Scholar 

  • Shmida, A. and S. D. Ellner (1984) Coexistence of plant species with similar niches.Vegetatio 58: 29–55.

    Google Scholar 

  • Sih, A. (1985) Evolution, predator avoidance, and unsuccessful predation.American Naturalist 125: 153–157.

    Article  Google Scholar 

  • Slatkin, M. (1974) Hedging one's evolutionary bets.Nature 250: 704–705.

    Google Scholar 

  • Slatkin, M. and R. Lande (1976) Niche width in a fluctuating environment-density independent model.American Naturalist 110: 31–55.

    Article  Google Scholar 

  • Stearns, C. S. (1976) Life history tactics: A review of the ideas.Quarterly Review of Biology 51: 3–47.

    Article  PubMed  CAS  Google Scholar 

  • Stearns, C. S. (1992)The evolution of life histories. Oxford University Press, Oxford.

    Google Scholar 

  • Stephens, D. W. and J. R. Krebs (1986)Foraging Theory. Princeton University Press, Princeton.

    Google Scholar 

  • Strathmann, R. R. (1974) The spread of sibling larvae of sedimentary marine invertebrates.American Naturalist 108: 29–44.

    Article  Google Scholar 

  • Sugihara, G. and R. M. May (1990) Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series.Nature 344: 734–741.

    Article  PubMed  CAS  Google Scholar 

  • Sulloway, F. J.Born to rebel: radical thinking in science and social thought. Harvard University Press, Cambridge. (in press)

  • Temme, D. H. and E. L. Charnov (1987) Brood size adjustment in birds: economically tracking in a temporally varying environment.Journal of Theoretical Biology 126: 137–147.

    Article  Google Scholar 

  • Turelli, M. and D. Petry (1980) Density-dependent selection in a random environment: an evolutionary process that can maintain stable population dynamics.Proceedings of the National Academy of Sciences of the USA 77: 7501–7505.

    Article  PubMed  Google Scholar 

  • Tuljapurkar, S. D. (1989) An uncertain life: demography in random environments.Theoretical Population Biology 35: 227–294.

    Article  PubMed  CAS  Google Scholar 

  • Tuljapurkar, S. D. (1991)Population dynamics in variable environments. Lecture Notes in Biomathematics Vol. 85. Springer, Berlin.

    Google Scholar 

  • Tuljapurkar, S. D. (1993) Environmental uncertainty and variable diapause.Theoretical Population Biology 43: 251–280.

    Article  PubMed  CAS  Google Scholar 

  • Tuljapurkar, S. D. and S. H. Orzack (1980) Population dynamics in variable environments. 1. Long-run growth rates and extinction.Theoretical Population Biology 18: 314–342.

    Article  Google Scholar 

  • van Baalen, M. and M. W. Sabelis (1995) The dynamics of multiple infection and the evolution of virulence.American Naturalist 146: 881–910.

    Article  Google Scholar 

  • Varley, G. C., G. R. Gradwell and M. P. Hassell (1973)Insect population ecology. Blackwell, Oxford.

    Google Scholar 

  • Venable, L. D. and J. S. Brown (1988) The selective interactions of dispersal, dormancy and seed size as adaptations for reducing risk in variable environments.American Naturalist 131: 360–384.

    Article  Google Scholar 

  • Venable, L. D. and L. Lawlor (1980) Delayed germination and dispersal in desert annuals: escape in space and time.Oecologia 46: 272–282.

    Article  Google Scholar 

  • Verner, J. (1965) Selection for the sex ratio.American Naturalist 99: 419–421.

    Article  Google Scholar 

  • von Neumann, J. and Morgenstern, O. (1947)The theory of games and economic behavior, 2nd edition. Princeton University Press, Princeton.

    Google Scholar 

  • Wagner, H. M. (1975)Principles of operations research with application to managerial decisions. 2nd edition. Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  • Wilson, D. S. and J. Yoshimura (1994) On the coexistence of specialists and generalists.American Naturalist 144: 692–707.

    Article  Google Scholar 

  • Yoshimura, J. and C. W. Clark (1991) Individual adaptations in stochastic environments.Evolutionary Ecology 5: 173–192, 430 (corrigenda).

    Article  Google Scholar 

  • Yoshimura, J. and C. W. Clark (eds.) (1993a)Adaptation in stochastic environments. Lecture Notes in Biomathematics Vol. 98. Springer, Berlin.

    Google Scholar 

  • Yoshimura, J. and C. W. Clark (1993b) Introduction: historical remarks. pp. 1–7.In J. Yoshimura and C. W. Clark (eds.)Adaptation in stochastic environments. Lecture Notes in Biomathematics Vol. 98. Springer, Berlin.

    Google Scholar 

  • Yoshimura, J. and W. M. Shields (1987) Probabilistic optimization of phenotype distributions: a general solution for the effects of uncertainty on natural selection?Evolutionary Ecology 1: 125–138.

    Article  Google Scholar 

  • Yoshimura, J. and W. M. Shields (1992) Components of uncertainty in clutch-size optimization.Bulletin of Mathematical Biology 54: 445–464.

    Google Scholar 

  • Yoshimura, J. and W. M. Shields (1995) Probabilistic optimization of body size: a discrepancy between genetic and phenotypic optima.Evolution 49: 375–378.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshimura, J., Jansen, V.A.A. Evolution and population dynamics in stochastic environments. Res Popul Ecol 38, 165–182 (1996). https://doi.org/10.1007/BF02515724

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02515724

Key words

Navigation