Skip to main content
Log in

Dynamics of age- and size-structured populations in fluctuating environments: Applications of stochastic matrix models to natural populations

  • Special Feature 1
  • Published:
Researches on Population Ecology

Abstract

Recent developments of the theory of stochastic matrix modeling have made it possible to estimate general properties of age- and size-structured populations in fluctuating environments. However, applications of the theory to natural populations are still few. The empirical studies which have used stochastic matrix models are reviewed here to examine whether predictions made by the theory can be generally found in wild populations. The organisms studied include terrestrial grasses and herbs, a seaweed, a fish, a reptile, a deer and some marine invertebrates. In all the studies, the stochastic population growth rate (ln λ s ) was no greater than the deterministic population growth rate determined using average vital rates, suggesting that the model based only on average vital rates may overestimate growth rates of populations in fluctuating environments. Factors affecting ln λ s include the magnitude of variation in vital rates, probability distribution of random environments, fluctuation in different types of vital rates, covariances between vital rates, and autocorrelation between successive environments. However, comprehensive rules were hardly found through the comparisons of the empirical studies. Based on shortcomings of previous studies, I address some important subjects which should be examined in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Åberg, P. (1992a) A demographic study of two populations of the seaweedAscophyllum nodosum.Ecology 73: 1473–1487.

    Article  Google Scholar 

  • Åberg, P. (1992b) Size-based demography of the seaweedAscophyllum nodosum in stochastic environments.Ecology 73: 1488–1501.

    Article  Google Scholar 

  • Akçakaja, H. R. and L. R. Ginzburg (1991) Ecological risk analysis for single and multiple populations. pp. 73–87.In A. Seitz and V. Loeschcke (eds.)Species conservation: a population-biological approach. Virkhäuser, Basel.

    Google Scholar 

  • Andersen, M. (1994) Stochastic models of age-structured population.Comments on Theoretical Biology 3: 365–395.

    CAS  Google Scholar 

  • Armbruster, P. and R. Lande (1994) A population viability analysis for African elephant (Loxodonta africana): how big should reserves be?Conservation Biology 7: 602–610.

    Article  Google Scholar 

  • Bachelet, G. (1986) Recruitment and year-to-year variability in a population ofMacoma balthica (L.).Hydrobiologia 142: 233–248.

    Article  Google Scholar 

  • Bascompte, J. and R. V. Solé (1995) Rethinking complexity: modeling spatiotemporal dynamics in ecology.Trends in Ecology and Evolution 10: 361–366.

    Article  Google Scholar 

  • Benton, T. G., A. Grant and T. H. Clutton-Brock (1995) Does environmental stochasticity matter? Analysis of red deer life-histories on Rum.Evolutionary Ecology 9: 559–574.

    Article  Google Scholar 

  • Bierzychudek, P. (1982) The demography of Jack-in-the-pulpit a forest perennial that changes sex.Ecological Monographs 52: 335–351.

    Article  Google Scholar 

  • Boyce, M. S. (1977) Population growth with stochastic fluctuations in the life table.Theoretical Population Biology 12: 366–373.

    Article  PubMed  CAS  Google Scholar 

  • Burgman, M. A. and V. A. Gerard (1990) A stage-structured, stochastic population model for the giant kelpMacrocystis pyrifera.Marine Biology 105: 15–23.

    Article  Google Scholar 

  • Canales, J., M. C. Trevisan, J. F. Silva and H. Caswell (1994) A demographic study of an annual grass (Andropogon brevifolius Schwarz) in burnt and unburnt savanna.Acta Œcologica 15: 261–273.

    Google Scholar 

  • Caswell, H. (1989)Matrix population models. Sinauer Associates, Sunderland.

    Google Scholar 

  • Caughley, G. and A. Gunn (1996)Conservation biology in theory and practice. Blackwell, London.

    Google Scholar 

  • Charlesworth, B. (1980)Evolution in age-structured populations. Princeton University Press, Princeton.

    Google Scholar 

  • Clutton-Brock, T. H. and S. D. Albon (1989)Red deer in the highlands. BSP Professional Books, Oxford.

    Google Scholar 

  • Cohen, J. E. (1976) Ergodicity of age structure in populations with Markovian vital rates, I: countable states.Journal of the American Statistical Association 71: 335–339.

    Article  Google Scholar 

  • Cohen, J. E. (1977a) Ergodicity of age structure in populations with Markovian vital rates, II: general states.Advances in Applied Probability 9: 18–37.

    Article  Google Scholar 

  • Cohen, J. E. (1977b) Ergodicity of age structure in populations with Markovian vital rates, III: finite-state moments and growth rate; an illustration.Advances in Applied Probability 9: 462–475.

    Article  Google Scholar 

  • Cohen, J. E. (1979a) Comparative statics and stochastic dynamics of age-structured populations.Theoretical Population Biology 16: 159–171.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, J. E. (1979b) Contractive inhomogeneous products of non-negative matrices.Mathematical Proceedings of the Cambridge Philosophical Society 86: 351–364.

    Article  Google Scholar 

  • Cohen, J. E. (1979c) Ergodic theorems in demography.Bulletin of the American Mathematical Society 1: 275–295.

    Article  Google Scholar 

  • Cohen, J. E. (1987) Stochastic demography.Encyclopedia of Statistical Sciences 8: 789–801.

    Google Scholar 

  • Cohen, J. E., S. W. Christensen and C. P. Goodyear (1983) A stochastic age-structured population model of striped bass (Morone saxatilis) in Potomac River.Canadian Journal of Fisheries and Aquatic Sciences 40: 2170–2183.

    Google Scholar 

  • Doak, D., P. Kareiva and B. Klepetka (1994) Modeling, population variability for the desert tortoise in the Western Mojave desert.Ecological Applications 4: 446–460.

    Article  Google Scholar 

  • Frazer, N. B., J. W. Gibbons and J. L. Greene (1992) Life history and demography of the common mud turtleKinosternon subrubrum in South Carolina, USA.Ecology 72: 2218–2231.

    Article  Google Scholar 

  • Gilpin, M. E. and I. Hanski (1991)Metapopulation dynamics. Academic Press, London.

    Google Scholar 

  • Gilpin, M. E. and M. E. Soulé (1986)Conservation biology. Sinauer Associates, Sunderland.

    Google Scholar 

  • Goodman, D. (1987) The demography of chance extinction. pp. 11–34.In M. E. Soulé (ed.)Viable population for conservation. Cambridge University Press, Cambridge.

    Google Scholar 

  • Goodyear, C. P., (1980) Oscillatory behavior of a striped bass population model controlled by a Ricker function.Transactions of the American Fisheries Society 109: 511–516.

    Article  Google Scholar 

  • Goodyear, C. P., J. E. Cohen and S. W. Christensen (1985) Maryland striped bass: recruitment declining below replacement.Transactions of the American Fisheries Society 114: 146–151.

    Article  Google Scholar 

  • Goshima, S. (1982) Population dynamics of the soft clam,Mya arenaria L., with special reference to its life history pattern.Publications from the Amakusa Marine Biological Laboratory, Kyushu University,6: 119–165.

    Google Scholar 

  • Gotelli, N. J. (1991) Demographic models forLeptogorgia virgulata, a shallow-water gorgonian.Ecology 72: 457–467.

    Article  Google Scholar 

  • Grant, P. R. and B. R. Grant (1992) Demography and the genetically effective sizes of two populations of Darwin's finches.Ecology 73: 766–784.

    Article  Google Scholar 

  • Hancock, D. A. (1973) The relationship between stock and recruitment in exploited invertebrates.Rapports et Procès-verbaux des Réunions Conseil permanent international pour l'Exploration de la Mer 164: 113–131.

    Google Scholar 

  • Harrison, S. and J. F. Quinn (1989) Correlated environments and the persistence of metapopulations.Oikos 56: 293–298.

    Google Scholar 

  • Heyde, C. C. and J. E. Cohen (1985) Confidence intervals for demographic projections based on products of random matrices.Theoretical Population Biology 27: 120–153.

    Article  PubMed  CAS  Google Scholar 

  • Huenneke, L. F. and P. L. Marks (1987) Stem dynamics of the shrubAlnus incana spp.rugosa: transition matrix models.Ecology 68: 1234–1242.

    Article  Google Scholar 

  • Iwao, S. and W. G. Wellington (1970a) The influence of behavioral differences among tent-caterpillar larvae on predation by a pentatomid bug.Canadian Journal of Zoology 48: 896–898.

    Google Scholar 

  • Iwao, S. and W. G. Wellington (1970b) The western tent caterpillar: qualitative differences and the action of natural enemies.Researches on Population Ecology 12: 81–99.

    Article  Google Scholar 

  • Lande, R. (1988) Genetics and demography in biological conservation.Science 241: 1455–1460.

    Article  PubMed  CAS  Google Scholar 

  • Lande, R. and S. H. Orzack (1988) Extinction dynamics of age-structured populations in a fluctuating environment.Proceedings of the National Academy of Sciences of the USA 85: 7418–7421.

    Article  PubMed  CAS  Google Scholar 

  • Lefkovitch, L. P. (1965) The study of population growth in organisms grouped by stages.Biometrics 21: 1–18.

    Article  Google Scholar 

  • Lefkovitch, L. P. (1967) A theoretical evaluation of population growth after removing individuals from some age groups.Bulletin of Entomological Research 57: 437–445.

    Article  Google Scholar 

  • Leigh, E. G., Jr. (1981) The average lifetime of a population in a varying environment.Journal of Theoretical Biology 90: 213–239.

    Article  PubMed  Google Scholar 

  • Leslie, P. H. (1945) On the use of matrices in certain population mathematics.Biometrika 33: 183–212.

    Article  Google Scholar 

  • Leslie, P. H. (1948) Some further notes on the use of matrices in population mathematics.Biometrika 35: 213–245.

    Article  Google Scholar 

  • Levin, S. A. and C. P. Goodyear (1980) Analysis of an age structured fishery model.Journal of Mathematical Biology 9: 245–274.

    Article  Google Scholar 

  • Levins, R. (1969) The effects of random variations of different types on population growth.Proceedings of the National Academy of Sciences of the USA 62: 1061–1065.

    Article  PubMed  CAS  Google Scholar 

  • Lewontin, R. C. and D. Cohen (1969) On population growth in a randomly varying environment.Proceedings of the National Academy of Science of the USA 62: 1056–1060.

    Article  CAS  Google Scholar 

  • Matsuda, H. and Y. Iwasa (1993) What causes extinction? The theory of conservation ecology.Kotaigun-Seitai-Gakkai-Kaihô 50: 2–9. (in Japanese).

    Google Scholar 

  • May, R. M. (1975)Stability and complexity in model ecosystems. 2nd ed. Princeton University Press, Princeton.

    Google Scholar 

  • May, R. M. (1981)Theoretical ecology: principles and applications. 2nd ed. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Murphy, G. I. (1968) Pattern in life history and the environment.American Naturalist 102: 391–403.

    Article  Google Scholar 

  • Nakaoka, M. (1993) Yearly variation in recruitment and its effect on population dynamics inYoldia notabilis (Mollusca: Bivalvia), analyzed using projection matrix model.Researches on Population Ecology 35: 199–213.

    Article  Google Scholar 

  • Nakaoka, M. (1996) Demography of the marine bivalveYoldia notabilis in fluctuating environments: an analysis by stochastic matrix model.Oikos (in press)

  • Nakaoka, M. and S. Matsui (1994) Annual variation in the growth rate ofYoldia notabilis (Bivalvia: Nuculanidae) in Otsuchi Bay, northeastern Japan, analyzed using shell microgrowth patterns.Marine Biology 119: 397–404.

    Article  Google Scholar 

  • Noda, T. and S. Nakao (1996) Dynamics of an entire population of the subtidal snailUmbonium costatum: the importance of annual recruitment fluctuation.Journal of Animal Ecology 65: 196–204.

    Article  Google Scholar 

  • Roughgarden, J. (1975) A simple model for population dynamics in stochastic environments.American Naturalist 109: 713–736.

    Article  Google Scholar 

  • Roughgarden, J., Y. Iwasa and C. Baxter (1985) Demographic theory for an open marine population with space-limited recruitment.Ecology 66: 54–67.

    Article  Google Scholar 

  • Schaffer, W. M. (1974) Selection for optimal life histories: the effects of age structure.Ecology 55: 291–303.

    Article  Google Scholar 

  • Silva, J. F., J. Raventos, H. Caswell and M. C. Trevisan (1991) Population responses to fire in a tropical savanna grass,Andropogon semiberbis: a matrix model approach.Journal of Ecology 79: 345–356.

    Article  Google Scholar 

  • Stearns, S. C. (1976) Life history tactics: a review of ideas.Quarterly Review of Biology 51: 3–47.

    Article  PubMed  CAS  Google Scholar 

  • Tuljapurkar, S. D. (1982a) Population dynamics in variable environments. II. Correlated environments, sensitivity analysis and dynamics.Theoretical Population Biology 21: 114–140.

    Article  Google Scholar 

  • Tuljapurkar, S. D. (1982b) Population dynamics in variable environments. III. Evolutionary dynamics of r-selection.Theoretical Population Biology 21: 141–165.

    Article  Google Scholar 

  • Tuljapurkar, S. D. (1986) Demography in stochastic environments. II. Growth and convergence rates.Journal of Mathematical Biology 24: 569–581.

    Article  PubMed  CAS  Google Scholar 

  • Tuljapurkar, S. D. (1989) An uncertain life: demography in random environments.Theoretical Population Biology 35: 227–294.

    Article  PubMed  CAS  Google Scholar 

  • Tuljapurkar, S. D. (1990a) Delayed reproduction and fitness in variable environments.Proceedings of the National Academy of Sciences of the USA 87: 1139–1143.

    Article  PubMed  CAS  Google Scholar 

  • Tuljapurkar, S. D. (1990b)Population dynamics in variable environments. Springer, New York.

    Google Scholar 

  • Tuljapurkar, S. D. and S. H. Orzack (1980) Population dynamics in variable environments. I. Long-run growth rates and extinction.Theoretical Population Biology 18: 314–342.

    Article  Google Scholar 

  • Turelli, M. (1977) Random environments and stochastic calculus.Theoretical Population Biology 12: 140–178.

    Article  PubMed  CAS  Google Scholar 

  • Vahl, O. (1982) Long-term variations in recruitment of the Iceland scallop,Chlamys islandica from northern Norway.Netherland Journal of Sea Research 16: 80–87.

    Article  Google Scholar 

  • van Groenendael, J., H. de Kroon and H. Caswell (1988) Projection matrices in population biology.Trends in Ecology and Evolution 3: 264–269.

    Article  Google Scholar 

  • van Winkle, W., B. L. Kirk and B. W. Rust (1979) Periodicities in Atlantic coast striped bass (Morone saxatilis) commercial fisheries data.Journal of the Fisheries Research Board of Canada 36: 54–62.

    Google Scholar 

  • Wellington, W. G. (1957) Individual differences as a factor in population dynamics: the development of a problem.Canadian Journal of Zoology 35: 293–323.

    Article  Google Scholar 

  • Yoshimura, J. (1995) Environmental uncertainty and natural selection.Japanese Journal of Ecology 45: 185–190. (in Japanese)

    Google Scholar 

  • Yoshimura, J. and C. W. Clark (1991) Individual adaptations in stochastic environments.Evolutionary Ecology 5: 173–192.

    Article  Google Scholar 

  • Yoshimura, J. and C. W. Clark (1993)Adaptation in stochastic environments. Lecture notes in biomathematics. Vol. 98. Springer, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakaoka, M. Dynamics of age- and size-structured populations in fluctuating environments: Applications of stochastic matrix models to natural populations. Res Popul Ecol 38, 141–152 (1996). https://doi.org/10.1007/BF02515722

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02515722

Key words

Navigation