Skip to main content
Log in

Simulation model of a predator-prey system comprised ofPhytoseiulus persimilis andTetranychus urticae. II. Model sensitivity to variations in the life history parameters of both species and to variations in the functional response and components of the numerical response

  • Published:
Researches on Population Ecology

Summary

A detailed sensitivity analysis of a model of a predator-prey system comprised ofTetranychus urticae andPhytoseiulus persimilis was performed. The aim was to assess the relative importance of the life history parameters of both species, the functional response, and the components of the numerical response. In addition, the impact of the initial predator-prey ratio and the timing of predator introduction were tested. Results indicated that the most important factors in the system were relative rates of predator and prey development, the time of onset of predator oviposition, and the mode of the predator's oviposition curve. The total oviposition of the predator, the effect of prey consumption on predator oviposition, and predator searching were important under some conditions. Factors of moderate importance were the adult female predator's functional response, total prey oviposition, the mode of the prey's oviposition curve, abiotic mortality of the pre-adult predator, and the effect of prey consumption on predator development and on the immature predator's mortality. Factors of least importance were the variances of the predator's and prey's oviposition curves, the abiotic mortality of the adult predator, the abiotic mortality of the pre-adult and adult prey, the functional response of the nymphal and adult male predators, and the effect of prey consumption on adult predator mortality. The sex ratios had little effect, except when the proportion of female predators was very low. The initial predator-prey ratio and time of predator introduction had significant impacts on system behavior, though the patterns of impact were different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beddington, J. R., M. P. Hassell andJ. H. Lawton (1976) The components of arthropod predation II. The predator rate of increase.J. Anim. Ecol.45: 165–185.

    Article  Google Scholar 

  • Berryman, A. A. (1978) Towards a theory of insect epidemiology.Res. Popul. Ecol.19: 181–196.

    Google Scholar 

  • Berryman, A. A. (1982) Biological control, thresholds, and pest outbreaks.Environ. Entomol.11: 544–549.

    Google Scholar 

  • Bravenboer, L. andG. Dosse (1962)Phytoseiulus riegeliDosse als Prädator einiger Schadmilben aus derTetranychus urticae-Gruppe.Ent. Exp. Appl.5: 291–304.

    Google Scholar 

  • Caswell H. (1978) A general formula for the sensitivity of population growth rate to changes in life history parameters.Theor. Popul. Biol.14: 215–230.

    Article  PubMed  CAS  Google Scholar 

  • Caswell, H. andA. Hastings (1980) Fecundity, developmental time, and population growth rate: an analytical solution.Theor. Popul. Biol.17: 71–79.

    Article  PubMed  CAS  Google Scholar 

  • Cole, L. C. (1954) The population consequences of life history phenomena.Quart. Rev. Biol.29: 103–137. (Reprinted inHazen.)

    Article  PubMed  CAS  Google Scholar 

  • Croft, B. A., R. L. Tummala, H. Riedl andS. M. Welch (1976) Modeling and management of two prototype apple pest subsystems. 97–119. InR. L. Tummala, D. L. Haynes andB. A. Croft (eds)Modeling for pest management. Michigan States University Press, East Lansing, Michigan.

    Google Scholar 

  • Fujita, K., T. Inoue andA. Takafuji (1979) Systems analysis of an acarine predator-prey system. I.Res. Popul. Ecol.21: 105–119.

    Google Scholar 

  • Gould, H. J., N. W. Hussey andW. J. Parr (1969) Large scale commercial control ofTetranychus urticaeKoch on cucumbers by the predatorPhytoseiulus persimilis A-H.Proc. 2nd Int. Cong. Acar. pp. 383–388.

  • Harmsen, R., M. R. Rose andB. Woodhouse (1976) A general mathematical model for insect outbreak.Proc. Entomol. Soc. Ontario.107: 11–18.

    Google Scholar 

  • Hassell, M. P., J. H. Lawton andJ. R. Beddington (1977) Sigmoid functional responses by invertebrate predators and parasitoids.J. Anim. Ecol.46: 249–262.

    Article  Google Scholar 

  • Hazen W. E. (ed) (1970)Readings in population and community ecology, 2nd ed. W. B. Saunders, Philadelphia.

    Google Scholar 

  • Hoel, P. G. (1971)Introduction to mathematical statistics, 4th ed. John Wiley & Sons, New York.

    Google Scholar 

  • Hogg, R. V. andA. T. Craig (1972)Introduction to mathematical statistics, 3rd ed. MacMillan, London. Reference fromTaylor (1979).

    Google Scholar 

  • Holling, C. S. (1959) The components of predation as revealed by a study of small-mammal predation of the European pine sawfly.Can. Entomol.91: 293–320. (Reprinted inHazen 1970).

    Article  Google Scholar 

  • Huffaker, C. B. andC. E. Kennett (1956) Experimental studies on predation: Predation and cyclamenmite populations on strawberries in California.Hilgardia25: 191–222.

    Google Scholar 

  • Huffaker, C. B., M. van de Vrie andJ. A. McMurtry (1970) Tetranychid populations and their possible control by predators: an evaluation.Hilgardia40: 391–458.

    Google Scholar 

  • Hussey, N. W., W. H. Read andJ. J. Hesling (1969)The pests of protected cultivation. Edward Arnold Ltd., London.

    Google Scholar 

  • Lewontin, R. C. (1965) Selection for colonizing ability. 77–91. InH. G. Baker andG. L. Stebbins (eds)The genetics of colonizing species. Academic Press, New York.

    Google Scholar 

  • Ludwig, D., D. D. Jones andC. S. Holling (1978) Qualitative analysis of insect outbreak systems: the spruce budworm and forest.J. Anim. Ecol.47: 315–332.

    Article  Google Scholar 

  • May, R. M. (1977) Thresholds and breakpoints in ecosystems with a multiplicity of stable states.Nature269: 471–477.

    Article  Google Scholar 

  • McClanahan, R. J. (1968) Influence of temperature on the reproductive potential of two mite predators of the two-spotted spider mite.Can. Entomol.100: 549–556.

    Article  Google Scholar 

  • Miller, D. R. (1974) Sensitivity analysis and validation of simulation models.J. Theor. Biol.48: 345–360.

    Article  PubMed  CAS  Google Scholar 

  • Miller, D. R., D. E. Weidhaas andR. C. Hall (1973) Parameter sensitivity in insect population modeling.J. Theor. Biol.42: 263–274.

    Article  PubMed  CAS  Google Scholar 

  • Murdoch, W. W. andA. Oaten (1975) Predation and population stability.Adv. Ecol. Res.9: 1–131.

    Article  Google Scholar 

  • Rabbinge, R. (1976)Biological control of fruit-tree red spider mite. Pudoc, Wageningen, the Netherlands.

    Google Scholar 

  • Rabbinge, R. andM. A. Hoy (1980) A population model for two-spotted spider miteTetranychus urticae and its predatorMetaseiulus occidentalis.Ent. Exp. Appl.28: 64–81.

    Article  Google Scholar 

  • Readshaw, J. L. andW. R. Cuff (1980) A model ofNicholson's blowfly cycles and its relevance to predation theory.J. Anim. Ecol.49: 1005–1010.

    Article  Google Scholar 

  • Shaw, P. B. (1985a) A detailed study of the life history ofPhytoseiulus persimilis: developmental rate, age-specific fecundity, survivorship, and sex ratio over a range of temperatures. In Prep.

  • Shaw, P. B. (1985b) A detailed study of the life history ofTetranychus urticae: developmental rate, age-specific fecundity, survivorship, and sex ratio over a range of temperatures. In prep.

  • Shaw, P. B. (1984) Simulation model of a predator-prey system comprised ofPhytoseiulus persimilisAthias-Henriot (Acari: Phytoseiidae) andTetranychus urticaeKoch (Acari: Tetranychidae) I. Structure and validation of the model.Res. Popul. Ecol.27: 235–259.

    Google Scholar 

  • Southwood, T. R. E. andH. N. Comins (1976) A synoptic population model.J. Anim. Ecol.45: 949–965.

    Article  Google Scholar 

  • Stenseth, C. (1979) Effect of temperature and humidity on the development ofPhytoseiulus persimilis and its ability to regulate populations ofTetranychus urticae (Acarina: Phytoseiidae, Tetranychidae).Entomophaga24: 311–317.

    Article  Google Scholar 

  • Takafuji, A. andD. A. Chant (1976) Comparative studies of two species of predacious phytoseiid mites (Acarina: Phytoseiidae), with special reference to their responses to the density of their prey.Res. Popul. Ecol.17: 255–310.

    Google Scholar 

  • Takahashi, F. (1964) Reproduction curve with two equilibrium points: a consideration on the fluctuation of insect population.Res. Popul. Ecol.6: 28–36.

    Google Scholar 

  • Taylor, F. (1979) Convergence to the stable age distribution in populations of insects.Am. Nat.113: 511–530.

    Article  Google Scholar 

  • Vithayathil, F. J. andH. A. Hirsh (1975) Sensitivity analysis of a simulation model of an agricultural ecosystem—some preliminary results.Modeling and Simulation6: 837–842.

    Google Scholar 

  • Wollkind, D. J., A. Hastings andJ. A. Logan (1980) Functional response, numerical response, and stability in arthropod predator-prey systems involving age-structure.Res. Popul. Ecol.22: 323–338.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, P.B. Simulation model of a predator-prey system comprised ofPhytoseiulus persimilis andTetranychus urticae. II. Model sensitivity to variations in the life history parameters of both species and to variations in the functional response and components of the numerical response. Res Popul Ecol 27, 1–23 (1985). https://doi.org/10.1007/BF02515476

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02515476

Keywords

Navigation