Journal of Molecular Evolution

, Volume 32, Issue 2, pp 128–144 | Cite as

Evolution of the cytochromeb gene of mammals

  • David M. Irwin
  • Thomas D. Kocher
  • Allan C. Wilson
Article

Summary

With the polymerase chain reaction (PCR) and versatile primers that amplify the whole cytochromeb gene (∼ 1140 bp), we obtained 17 complete gene sequences representing three orders of hoofed mammals (ungulates) and dolphins (cetaceans). The fossil record of some ungulate lineages allowed estimation of the evolutionary rates for various components of the cytochromeb DNA and amino acid sequences. The relative rates of substitution at first, second, and third positions within codons are in the ratio 10 to 1 to at least 33. For deep divergences (>5 million years) it appears that both replacements and silent transversions in this mitochondrial gene can be used for phylogenetic inference. Phylogenetic findings include the association of (1) cetaceans, artiodactyls, and perissodactyls to the exclusion of elephants and humans, (2) pronghorn and fallow deer to the exclusion of bovids (i. e., cow, sheep, and goat), (3) sheep and goat to the exclusion of other pecorans (i. e., cow, giraffe, deer, and pronghorn), and (4) advanced ruminants to the exclusion of the chevrotain and other artiodactyls. Comparisons of these cytochromeb sequences support current structure-function models for this membrane-spanning protein. That part of the outer surface which includes the Qo redox center is more constrained than the remainder of the molecule, namely, the transmembrane segments and the surface that protrudes into the mitochondrial matrix. Many of the amino acid replacements within the transmembrane segments are exchanges between hydrophobic residues (especially leucine, isoleucine, and valine). Replacement changes at first and second positions of codons approximate a negative binomial distribution, similar to other protein-coding sequences. At four-fold degenerate positions of codons, the nucleotide substitutions approximate a Poisson distribution, implying that the underlying mutational spectrum is random with respect to position.

Key words

Polymerase chain reaction Direct sequencing Mitochondrial DNA Hoofed mammals Cetaceans Molecular phylogeny Evolutionary rates Base composition Structure-function relationships 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290: 457–465PubMedCrossRefGoogle Scholar
  2. Anderson S, de Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J Mol Biol 156: 683–717PubMedCrossRefGoogle Scholar
  3. Aquadro CF, Greenberg BD (1983) Human mitochondrial DNA variation and evolution: analysis of nucleotide sequences from seven individuals. Genetics 103: 287–312PubMedGoogle Scholar
  4. Beintema JJ, Schüller C, Irie M, Carsana A (1988) Molecular evolution of the ribonuclease superfamily. Prog Biophys Mol Biol 51: 165–192PubMedCrossRefGoogle Scholar
  5. Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26: 167–180PubMedCrossRefGoogle Scholar
  6. Brown WM (1985) The mitochondrial genome of animals. In: MacIntyre RJ (ed) Molecular evolutionary genetics. Plenum, New York, pp 95–130Google Scholar
  7. Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18: 225–239PubMedCrossRefGoogle Scholar
  8. Carroll RL (1988) Vertebrate paleontology and evolution. WH Freeman, New YorkGoogle Scholar
  9. Carlson SS, Wilson AC, Maxson RD (1978) Do albumin clocks run on time? Science 200: 1183–1185CrossRefPubMedGoogle Scholar
  10. Czelusniak J, Goodman M, Moncrief ND, Kehoe SM (1990) Maximum parsimony approach to construction of evolutionary trees from aligned homologous sequences. Methods Enzymol 183: 601–615PubMedGoogle Scholar
  11. de Jong WW (1985) Superordinal affinities of rodentia studied by sequence analysis of eye lens proteins. In: Luckett WP, Hartenberger J-L (eds) Evolutionary relationships among rodents. A multidisciplinary analysis. Plenum, New York, pp 211–226Google Scholar
  12. di Rago J-P, Netter P, Slonimski PP (1990) Pseudo-wild type revertants from inactive apocytochromeb mutants as a tool for the analysis of the structure/function relationships of the mitochondrial ubiquinol-cytochromec reductase ofSaccharomyces cerevisiae. J Biol Chem 265: 3332–3339PubMedGoogle Scholar
  13. Easteal S (1990) The pattern of mammalian evolution and the relative rate of molecular evolution. Genetics 124: 165–173PubMedGoogle Scholar
  14. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791CrossRefGoogle Scholar
  15. Fukuda M, Wakasugi S, Tsuzuki T, Nomiyama H, Shimada K, Miyata T (1985) Mitochondrial DNA-like sequences in the human nuclear genome. Characterization and implications in the evolution of mitochondrial DNA. J Mol Biol 186: 257–266PubMedCrossRefGoogle Scholar
  16. Gadaleta G, Pepe G, De Candia G, Quagliariello C, Sbisà E, Saccone C (1989) The complete nucleotide sequence of theRattus norvegicus mitochondrial genome: cryptic signals revealed by comparative analysis between vertebrates. J Mol Evol 28: 497–516PubMedGoogle Scholar
  17. Gyllensten UB, Erlich HA (1988) Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of theHLA-DQA locus. Proc Natl Acad Sci USA 85: 7652–7656PubMedCrossRefGoogle Scholar
  18. Harrison RG (1989) Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends Ecol & Evol 4: 6–11CrossRefGoogle Scholar
  19. Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54: 1015–1069PubMedCrossRefGoogle Scholar
  20. Hayasaka K, Gojobori T, Horai S (1988) Molecular phylogeny and evolution of primate mitochondrial DNA. Mol Biol Evol 5: 626–644PubMedGoogle Scholar
  21. Holmquist R, Goodman M, Conroy T, Czelusniak J (1983) The spatial distribution of fixed mutations within genes coding for proteins. J Mol Evol 19: 437–448PubMedCrossRefGoogle Scholar
  22. Howell N (1989) Evolutionary conservation of protein regions in the proton-motive cytochromeb and their possible roles in redox catalysis. J Mol Evol 29: 157–169PubMedCrossRefGoogle Scholar
  23. Howell N, Gilbert K (1988) Mutational analysis of the mouse mitochondrial cytochromeb gene. J Mol Biol 203: 607–618PubMedCrossRefGoogle Scholar
  24. Irwin DM, Wilson AC (1989) Multiple cDNA sequences and the evolution of bovine stomach lysozyme. J Biol Chem 264: 11387–11393PubMedGoogle Scholar
  25. Irwin DM, Wilson AC (1990) Concerted evolution of ruminant stomach lysozymes. Characterization of lysozyme cDNA clones from sheep and deer. J Biol Chem 265: 4944–4952PubMedGoogle Scholar
  26. Irwin DM, Wilson AC (1991) Limitations of molecular methods for establishing the phylogeny of mammals, with special reference to the position of elephants. In: Szalay FS, Novacek MJ, McKenna MC (eds) American Museum of Natural History symposium on mammalian phylogeny. Princeton University Press, Princeton NJ (in press)Google Scholar
  27. Irwin DM, Sidow A, White RT, Wilson AC (1989) Multiple genes for ruminant lysozymes. In: Smith-Gill SJ, Sercarz EE (eds) The immune response to structurally defined proteins: the lysozyme model. Adenine Press, Schenectady NY, pp 73–85Google Scholar
  28. Janis CM (1988) New ideas in ungulate phylogeny and evolution. Trends Ecol & Evol 3: 291–297CrossRefGoogle Scholar
  29. Jollès J, Jollès P, Bowman BH, Prager EM, Stewart C-B, Wilson AC (1989) Episodic evolution in the stomach lysozymes of ruminants. J Mol Evol 28: 528–535PubMedGoogle Scholar
  30. Jollès J, Prager EM, Alnemri ES, Jollès P, Ibrahimi IM, Wilson AC (1990) Amino acid sequences of stomach and nonstomach lysozymes of ruminants. J Mol Evol 30: 370–382PubMedCrossRefGoogle Scholar
  31. Kamimura N, Ishii S, Liandong M, Shay JW (1989) Three separate mitochondrial DNA sequences are contiguous in human genomic DNA. J Mol Biol 210: 703–707PubMedCrossRefGoogle Scholar
  32. Keohavong P, Thilly WG (1989) Fidelity of DNA polymerases in DNA amplification. Proc Natl Acad Sci USA 86: 9253–9257PubMedCrossRefGoogle Scholar
  33. Kocher TD, White TJ (1989) Evolutionary analysis via PCR. In: Erlich HA (ed) PCR technology. Principles and applications for DNA amplification. Stockton Press, New York, pp 137–147Google Scholar
  34. Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in mammals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86: 6196–6200PubMedCrossRefGoogle Scholar
  35. Koop BF, Goodman M (1988) Evolutionary and developmental aspects of two hemoglobin β-chain genes (∈M and βM) of opossum. Proc Natl Acad Sci USA 85: 3893–3897PubMedCrossRefGoogle Scholar
  36. Larson A, Wilson AC (1989) Patterns of ribosomal RNA evolution in salamanders. Mol Biol Evol 6: 131–154PubMedGoogle Scholar
  37. Li W-H, Luo C-C, Wu C-I (1985) Evolution of DNA sequences. In: MacIntyre RJ (ed) Molecular evolutionary genetics. Plenum, New York, pp 1–94Google Scholar
  38. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor NYGoogle Scholar
  39. Messing J (1983) New M13 vectors for cloning. Methods Enzymol 101: 20–78PubMedCrossRefGoogle Scholar
  40. Meyer A, Wilson AC (1990) Origin of tetrapods inferred from their mitochondrial DNA affiliation to lungfish. J Mol Evol 31: 359–364PubMedCrossRefGoogle Scholar
  41. Miyamoto MM, Boyle SM (1989) The potential importance of mitochondrial DNA sequence data to eutherian mammal phylogeny. In: Fernholm B, Bremer K, Jörnvall H (eds) The hierarchy of life. Elsevier, Amsterdam, pp 437–450Google Scholar
  42. Mross GA, Doolittle RF (1967) Amino acid sequence studies on artiodactyl fibrinopeptides. II. Vicuna, elk, muntjak, pronghorn antelope, and water buffalo. Arch Biochem Biophys 122: 674–684CrossRefGoogle Scholar
  43. Nomiyama H, Fukuda M, Wakasugi S, Tsuzuki T, Shimada K (1985) Molecular structures of mitochondrial-DNA-like sequences in human nuclear DNA. Nucleic Acids Res 13: 1649–1658PubMedGoogle Scholar
  44. Novacek MJ (1989) Higher mammal phylogeny: the morphological-molecular synthesis. In: Fernholm B, Bremer K, Jörnvall H (eds) The hierarchy of life. Elsevier, Amsterdam, pp 421–435Google Scholar
  45. Pääbo S, Wilson AC (1988) Polymerase chain reaction reveals cloning artefacts. Nature 334: 387–388PubMedCrossRefGoogle Scholar
  46. Prager EM, Wilson AC (1988) Ancient origin of lactalbumin from lysozyme: analysis of DNA and amino acid sequences. J Mol Evol 27: 326–335PubMedCrossRefGoogle Scholar
  47. Saccone C, Attimonelli M, Lanave C, Gallerani R, Pesole G (1987) The evolution of mitochondrially coded cytochrome genes: a quantitative estimate. In: Papa S, Chance B, Ernster L (eds) Cytochrome systems. Plenum, New York, pp 103–109Google Scholar
  48. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491PubMedCrossRefGoogle Scholar
  49. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425PubMedGoogle Scholar
  50. Sarich VM (1985) Rodent macromolecular systematics. In: Luckett WP, Hartenberger J-L (eds) Evolutionary relationships among rodents. A multidisciplinary analysis. Plenum, New York, pp 423–452Google Scholar
  51. Savage DE, Russell DE (1983) Mammalian paleofaunas of the world. Addison-Wesley, Reading MAGoogle Scholar
  52. Shoshani J (1986) Mammalian phylogeny: comparison of morphological and molecular results. Mol Biol Evol 3: 222–242PubMedGoogle Scholar
  53. Sidow A, Wilson AC (1990) Compositional statistics: an improvement of evolutionary parsimony and its application to deep branches in the tree of life. J Mol Evol 31: 51–68PubMedCrossRefGoogle Scholar
  54. Simon C, Pääbo S, Kocher TD, Wilson AC (1990) Evolution of mitochondrial ribosomal RNA in insects as shown by the polymerase chain reaction. In: Clegg M, Clark S (eds) Molecular evolution. UCLA symposia on molecular and cellular biology, new series, vol 122. Alan R Liss, New York, pp 235–244Google Scholar
  55. Simpson GG (1945) The principles of classification and a classification of mammals. Bull Am Mus Nat Hist 85: 1–350Google Scholar
  56. Southern SO, Southern PJ, Dizon AE (1988) Molecular characterization of a cloned dolphin mitochondrial genome. J Mol Evol 28: 32–42PubMedCrossRefGoogle Scholar
  57. Sueoka N (1988) Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci USA 85: 2653–2657PubMedCrossRefGoogle Scholar
  58. Swofford DL (1989) PAUP: phylogenetic analysis using parsimony, version 3.0b. Illinois Natural History Survey, Champaign ILGoogle Scholar
  59. Thomas WK, Beckenbach AT (1989) Variation in salmonid mitochondrial DNA: evolutionary constraints and mechanisms of substitution. J Mol Evol 29: 233–245PubMedCrossRefGoogle Scholar
  60. Thomas WK, Maa J, Wilson AC (1989) Shifting constraints on tRNA genes during mitochondrial DNA evolution in animals. New Biologist 1: 93–100PubMedGoogle Scholar
  61. Tindall KR, Kunkel TA (1988) Fidelity of DNA synthesis by theThermus aquaticus DNA polymerase. Biochemistry 27: 6008–6013PubMedCrossRefGoogle Scholar
  62. Uzzell T, Corbin KW (1971) Fitting discrete probability distributions to evolutionary events. Science 172: 1089–1096PubMedCrossRefGoogle Scholar
  63. Watanabe T, Hayashi Y, Semba R, Ogasawara N (1985) Bovine mitochondrial DNA polymorphism in restriction endonuclease cleavage patterns and the location of the polymorphic sites. Biochem Genet 23: 947–957PubMedCrossRefGoogle Scholar
  64. Watanabe T, Masangkay JS, Wakana S, Saitou N, Tomita T (1989) Mitochondrial DNA polymorphism in native Philippine cattle based on restriction endonuclease cleavage patterns. Biochem Genet 27: 431–438PubMedCrossRefGoogle Scholar
  65. White TJ, Arnheim N, Erlich HA (1989) The polymerase chain reaction. Trends Genet 5: 185–189PubMedCrossRefGoogle Scholar
  66. Wilson AC, Cann RL, Carr SM, George M, Gyllensten UB, Helm-Bychowski KM, Higuchi RG, Palumbi SR, Prager EM, Sage RD, Stoneking M (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biol J Linn Soc 26: 375–400Google Scholar
  67. Wilson AC, Zimmer EA, Prager EM, Kocher TD (1989) Restriction mapping in the molecular systematics of mammals: a retrospective salute. In: Fernholm B, Bremer K, Jörnvall H (eds) The hierarchy of life. Elsevier, Amsterdam, pp 407–419Google Scholar

Copyright information

© Springer-Verlag New York Inc 1991

Authors and Affiliations

  • David M. Irwin
    • 1
  • Thomas D. Kocher
    • 1
  • Allan C. Wilson
    • 1
  1. 1.Division of Biochemistry and Molecular BiologyUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of ZoologyUniversity of New HampshireDurhamUSA

Personalised recommendations