Skip to main content
Log in

Properties of the apamin-sensitive component of Ca2+-dependent K+ current in smooth muscle cells of the guinea pigtaenia coli

  • Published:
Neurophysiology Aims and scope

Abstract

With the help of a standard voltage-clamp technique, we investigated transmembrane ion currents in isolated smooth muscle cells of the guinea pigtaenia coli. In Ca2+-dependent K+ current, we identified and studied the properties of an apamin-sensitive voltage-independent component carried through the channels of low conductance (in many publications called small conductance,I SK(Ca)). This component did not show the temporal inactivation;I SK(Ca) was insensitive to the action of 4 mM tetraethylammonium, but was completely blocked by 500 nM of apamin. It was shown thatI SK(Ca) is very sensitive to changes in the intracellular Ca2+ concentration ([Ca2+] i ): a decrease in [Ca2+] i up to 50 nM resulted in the almost complete blockade of the current. The entry of Ca ions into a cell from the external solution through the voltage-operated Ca2+ channels of L-type was not an obligatory condition for activation ofI SK(Ca). The current-voltage relationship forI SK(Ca) had a maximum within the voltage range of +20 to +50 mV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Zholos, V. A. Bouryi, and M. F. Shuba “Components of transmembrane ion current of the electroexcitable membrane of smooth muscle cells,”Biol. Membrany,3, No. 8, 804–815 (1986).

    CAS  Google Scholar 

  2. Y. Yamamoto, S. L. Hu, and C. Y. Kao, “Outward current in single smooth muscle cells of the guinea pigtaenia coli,”Gen. J. Physiol.,93, No. 3, 551–564 (1989).

    Article  CAS  Google Scholar 

  3. S. L. Hu, Y. Yamamoto, and C. Y. Kao, “Permeation, selectivity, and blockade of the Ca2+-activated potassium channel of the guinea pigtaenia coli myocyte,”Gen. J. Physiol. 94, No. 5, 849–862 (1989).

    Article  CAS  Google Scholar 

  4. A. V. Povstyan, A. V. Zima, V. L. Reznikov, et al., “Components of depolarization-induced transmembrane ion current in isolated smooth muscle cells of the guinea pigtaenia coli,”Neirofiziologiya/Neurophysiology,29, Nos. 4/5, 340–350 (1997).

    CAS  Google Scholar 

  5. A. V. Povstyan, A. V. Zima, M. I. Harhun, and M. F. Shuba, “Properties of a charibdotoxin-sensitive component of Ca2+-dependent K+ current in smooth muscle cells of the guinea pigtaenia coli,”Neirofiziologiya/Neurophysiology,32, No. 1, 3–10, (2000).

    Google Scholar 

  6. M. Hugues, H. Schmid, G. Romey, et al., “The Ca2+-dependent slow K+ conductance in cultured rat muscle cells: characterization with apamin,”EMBO J.,1, 1039–1042 (1982).

    PubMed  CAS  Google Scholar 

  7. A. L. Blatz and K. L. Magleby, “Single apamin-blocked Ca-activated K+ channels of low conductance in cultured rat skeletal muscle,”Nature,323, 718–720 (1986).

    Article  PubMed  CAS  Google Scholar 

  8. T. Capiod and D. C. Ogden, “The properties of calcium-activated potassium ion channels in guinea-pig isolated hepatocytes,”J. Physiol.,409, 285–295 (1989).

    PubMed  CAS  Google Scholar 

  9. H. S. Gagov, D. B. Duridanova, and K. K. Boev, “Participation of calcium, released from the IP3-sensitive Ca-store, in activation of Ca-dependent potassium conductance of ileal smooth muscle cells,”Gen. Physiol. Biophys.,12, 199–211 (1993).

    PubMed  CAS  Google Scholar 

  10. F. Vogalis and R. K. Goyal, “Activation of small conductance Ca2+-dependent K+ channels by purinergic agonists in smooth muscle cells of the mouse ileum,”J. Physiol.,502, No. 3, 497–508 (1997).

    Article  PubMed  CAS  Google Scholar 

  11. F. Vogalis, Y. Zhang, and R. K. Goyal, “An intermediate conductance K+ channel in the cell membrane of mouse intestinal smooth muscle,”Biochim. Biophys. Acta,1371, No. 2, 309–316 (1998).

    Article  PubMed  CAS  Google Scholar 

  12. S. D. Koh, G. M. Dick, and K. M. Sanders, “Small-conductance Ca2+-dependent K+ channels activated by ATP in murine colonic smooth muscle,”Am. J. Physiol.,273, No. 6, C2010-C2021 (1997).

    PubMed  CAS  Google Scholar 

  13. A. V. Zima, A. V. Povstyan, and M. F. Shuba, “Ca2+-dependent K+ channels of big conductance in the membrane of smooth muscle cells of the guinea pigtaenia coli,”Vestn. Kar’kov Univ., Ser. Biophys. Vestn., No. 466, Issue 5, 47–51 (1999).

    Google Scholar 

  14. O. P. Hamill, A. Marty, E. Neher, et al., “Improved patch-clamp techniques for high-resolution current recording from cell-free membrane patches,”Pflügers Arch.,391, No. 1, 85–100 (1981).

    Article  PubMed  CAS  Google Scholar 

  15. A. V. Zima, A. É. Belevich, Ya. D. Tsytsyura, and M. F. Shuba, “Effect of nitric oxide on Ca2+ and Ca2+-activated K+ channels in smooth muscle cells of the guinea pigtaenia coli,”Fizika Zhivogo,4, No. 1, 67–72 (1996).

    Google Scholar 

  16. S. H. P. Alexander and J. A. Peters,TiPS Receptor & Ion Channel Nomenclature Supplement (1997).

  17. V. A. Bouryi, A. V. Gourkovskaya and M. F. Shuba, “Identification of transmembrane Ca2+ current of smooth muscle cells in K+-free medium,”Dokl. Akad. Nauk SSSR,268, No. 2, 481–485 (1983).

    Google Scholar 

  18. V. V. Rekalov, V. M. Taranenko, and M. F. Shuba, “Calcium current in single smooth muscle cells,”Dokl. Akad. Nauk SSSR,276, No. 3, 750–752 (1984).

    PubMed  CAS  Google Scholar 

  19. V. Ya. Ganitkevich, S. V. Smimov, and M. F. Shuba, “Identification of Ca2+ current in isolated smooth muscle cells,”Dokl. Akad. Nauk SSSR,282, No. 3, 717–720 (1985).

    PubMed  CAS  Google Scholar 

  20. A. V. Zholos, L. V. Baidan, and M. F. Shuba, “Some properties of Ca2+-induced Ca2+ release mechanism in single visceral smooth muscle cell of the guinea-pig,”J. Physiol.,457, 1–25 (1992).

    PubMed  CAS  Google Scholar 

  21. A. L. Blatz and K. L. Magleby, “Ion conductance and selectivity of single calcium-activated potassium channels in cultured rat muscle,”J. Gen. Physiol.,84, No. 1, 1–23 (1984).

    Article  PubMed  CAS  Google Scholar 

  22. R. Latorre and C. Miller, “Conduction and selectivity in potassium channels,”J. Membrane Biol.,71, Nos. 1/2, 11–30 (1983).

    Article  CAS  Google Scholar 

  23. C. D. Benham, T. B. Bolton, R. J. Lang, and T. Takewaki, “The mechanism of action of Ba2+ and TEA on single Ca2+-activated K+ channels in arterial and intestinal smooth muscle cell membranes,”Pflügers Arch.,403, No. 2, 120–127 (1985).

    Article  PubMed  CAS  Google Scholar 

  24. A. Marty, “Ca-dependent K channels with large unitary conductance in chromaffin cell membranes,”Nature,291, 497–500 (1981).

    Article  PubMed  CAS  Google Scholar 

  25. M. Kohler, B. Hirschberg, C. T. Bond, et al., “Small-conductance, calcium-activated potassium channels from mammalian brain,”Science,273, 1709–1714 (1996).

    PubMed  CAS  Google Scholar 

  26. N. S. Atkinson, G. A. Robertson, and B. Ganetzky, “A component of calcium-activated potassium channels encoded by theDrosophila slo locus,”Science,253, 551–555 (1991).

    Article  PubMed  CAS  Google Scholar 

  27. H. Kolb, “Potassium channels in excitable and non-excitable cells,”Rev. Physiol. Biochem. Pharmacol.,115, 52–91 (1990).

    Google Scholar 

  28. P. L. Becker, J. J. Singer, J. V. Walsh, and F. S. Fay, “Regulation of calcium concentration in voltage-clamped smooth muscle cells,”Science,244, 211–214 (1989).

    Article  PubMed  CAS  Google Scholar 

  29. V. Ya. Ganitkevich and G. Isenberg, “Depolarization-mediated intracellular calcium transients in isolated smooth muscle cells of guinea-pig urinary bladder,”J. Physiol.,435, 187–205 (1991).

    CAS  Google Scholar 

  30. J. N. Barrett, K. L. Magleby, and B. S. Pallotta, “Properties of single calcium-activated potassium channels in cultured rat muscle,”J. Physiol.,331, 211–230 (1982).

    PubMed  CAS  Google Scholar 

  31. W. C. Cole and K. M. Sanders, “Characterization of macroscopic outward currents of canine colonic myocytes,”Am. J. Physiol.,26, No. 3, C461-C469 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Neirofiziologiya/Neurophysiology, Vol. 32, No. 2, pp. 87–94, March–April, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Povstyan, A.V., Zima, A.V., Harhun, M.I. et al. Properties of the apamin-sensitive component of Ca2+-dependent K+ current in smooth muscle cells of the guinea pigtaenia coli . Neurophysiology 32, 63–69 (2000). https://doi.org/10.1007/BF02515170

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02515170

Keywords

Navigation